PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdullah, A., Jamaludin, S. B., Noor, M. M., & Hussin, K. (2011). Composite cement reinforced coconut fibre: Physical and mechanical properties and fracture behaviour. Australian Journal of Basic and Applied Sciences, 5(7), 1228–1240.

  • Abraham, E., Deepa, B., Pothen, L. A., Cintil, J., Thomas, S., John, M. J., Anandjiwala, R., & Narine, S. S. (2013). Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92(2), 1477–1483. https://doi.org/10.1016/j.carbpol.2012.10.056

  • Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., Sugiarti, E., Sapuan, S. M., Ilyas, R. A., & Stephane, I. (2019). A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 93, 276–283. https://doi.org/10.1016/j.foodhyd.2019.02.012

  • Agyei-Tuffour, B., Asante, J. T., Nyankson, E., Dodoo-Arhin, D., Oteng-Peprah, M., Azeko, S. T., Azeko, A. S., Oyewole, O. K., & Yaya, A. (2021). Comparative analyses of rice husk cellulose fibre and kaolin particulate reinforced thermoplastic cassava starch biocomposites using the solution casting technique. Polymer Composites, 42(7), 3216–3230. https://doi.org/10.1002/pc.26052

  • Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S. M., & Khairul, M. D. (2011). Studying the effect of fibre size and fibre loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546–553. https://doi.org/10.1177/0731684411399141

  • AL-Hassan, A. A., & Norziah, M. H. (2017). Effect of transglutaminase induced crosslinking on the properties of starch/gelatin films. Food Packaging and Shelf Life, 13, 15–19. https://doi.org/10.1016/j.fpsl.2017.04.006

  • ASTM [American Society for Testing and Materials]. (2022). ASTM D638 Standard test method for tensile properties of plastics. ASTM International.

  • ASTM [American Society for Testing and Materials]. (2017). ASTM D790 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International.

  • Barkoula, N. M., Alcock, B., Cabrera, N. O., & Peijs, T. (2008). Flame-retardancy properties of intumescent ammonium poly(Phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers and Polymer Composites, 16(2), 101–113. https://doi.org/10.1002/pc

  • Campos, A., Sena Neto, A. R., Rodrigues, V. B., Luchesi, B. R., Mattoso, L. H. C., & Marconcini, J. M. (2018). Effect of raw and chemically treated oil palm mesocarp fibres on thermoplastic cassava starch properties. Industrial Crops and Products, 124, 149–154. https://doi.org/10.1016/j.indcrop.2018.07.075

  • Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A., & Bayer, I. S. (2015). Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Applied Materials and Interfaces, 7(6), 3742–3753. https://doi.org/10.1021/am508515z

  • Chotiprayon, P., Chaisawad, B., & Yoksan, R. (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121

  • Dang, K. M., & Yoksan, R. (2021). Thermoplastic starch blown films with improved mechanical and barrier properties. International Journal of Biological Macromolecules, 188, 290–299. https://doi.org/10.1016/j.ijbiomac.2021.08.027

  • Delli, E., Giliopoulos, D., Bikiaris, D. N., & Chrissafis, K. (2021). Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites. Composite Structures, 263, Article 113678. https://doi.org/10.1016/j.compstruct.2021.113678

  • Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2021a). Extraction and characterization of natural cellulosic fibre from pandanus amaryllifolius leaves. Polymers, 13(23), Article 4171. https://doi.org/10.3390/polym13234171

  • Diyana, Z. N., Jumaidin, R., Selamat, M. Z., & Suan, M. S. M. (2021b). Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties. International Journal of Biological Macromolecules, 190, 224–232. https://doi.org/10.1016/j.ijbiomac.2021.08.201

  • Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 63, 76–84. https://doi.org/10.1016/j.compositesa.2014.04.003

  • Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers and Polymers, 18(1), 162–171. https://doi.org/10.1007/s12221-017-6251-7

  • Estrada-Monje, A., Alonso-Romero, S., Zitzumbo-Guzmán, R., Estrada-Moreno, I. A., & Zaragoza-Contreras, E. A. (2021). Thermoplastic starch-based blends with improved thermal and thermomechanical properties. Polymers, 13(23), Article 4263. https://doi.org/10.3390/polym13234263

  • Hafila, K. Z., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., & Yusof, F. A. M. (2022). Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. International Journal of Biological Macromolecules, 194, 851–860. https://doi.org/10.1016/j.ijbiomac.2021.11.139

  • Halal, S. L. M. E., Zavareze, E. D. R., Rocha, M. D., Pinto, V. Z., Nunes, M. R., Luvielmo, M. D. M., & Prentice, C. (2016). Films based on protein isolated from croaker (Micropogonias furnieri) and palm oil. Journal of the Science of Food and Agriculture, 96(7), 2478–2485. https://doi.org/10.1002/jsfa.7368

  • Hasan, M., Gopakumar, D. A., Olaiya, N. G., Zarlaida, F., Alfian, A., Aprinasari, C., Alfatah, T., Rizal, S., & Khalil, H. P. S. A. (2020). Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. International Journal of Biological Macromolecules, 156, 896–905. https://doi.org/10.1016/j.ijbiomac.2020.04.039

  • Hassan, M. M., Le Guen, M. J., Tucker, N., & Parker, K. (2019). Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose, 26(7), 4463–4478. https://doi.org/10.1007/s10570-019-02393-1

  • Hazrol, M. D., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Wahab, N. I. A. (2021). Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers, 13(2), Article 242. https://doi.org/10.3390/polym13020242

  • Ilyas, R. A., & Sapuan, S. M. (2020a). Biopolymers and biocomposites: Chemistry and technology. Current Analytical Chemistry, 16(5), 500–503. https://doi.org/10.2174/157341101605200603095311

  • Ilyas, R. A., & Sapuan, S. M. (2020b). The preparation methods and processing of natural fibre bio-polymer composites. Current Organic Synthesis, 16(8), 1068–1070. https://doi.org/10.2174/157017941608200120105616

  • Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 202, 186–202. https://doi.org/10.1016/j.carbpol.2018.09.002

  • Ilyas, R. A., Zuhri, M. Y. M., Norrrahim, M. N. F., Misenan, M. S. M., Jenol, M. A., Samsudin, S. A., Nurazzi, N. M., Asyraf, M. R. M., Supian, A. B. M., Bangar, S. P., Nadlene, R., Sharma, S., & Omran, A. A. B. (2022). Natural fiber-reinforced polycaprolactone green and hybrid biocomposites for various advanced applications. Polymers, 14(1), Article 182. https://doi.org/10.3390/polym14010182

  • Jacob, G. C., Starbuck, J. M., Fellers, J. F., & Simunovic, S. (2005). Effect of fibre volume fraction, fibre length and fibre tow size on the energy absorption of chopped carbon fibre-polymer composites. Polymer Composites, 26(3), 293–305. https://doi.org/10.1002/pc.20100

  • Javaid, M. A., Zia, K. M., Zafar, K., Khosa, M. K., Akram, N., Ajmal, M., Imran, M., & Iqbal, M. N. (2020). Synthesis and molecular characterisation of chitosan/starch blends based polyurethanes. International Journal of Biological Macromolecules, 146, 243–252. https://doi.org/10.1016/j.ijbiomac.2019.12.234

  • Jumaidin, R., Diah, N. A., Ilyas, R. A., Alamjuri, R. H., & Yusof, F. A. M. (2021). Processing and characterisation of banana leaf fibre reinforced thermoplastic cassava starch composites. Polymers, 13, Article 1420. https://doi.org/10.3390/polym13091420

  • Jumaidin, R., Khiruddin, M. A. A., Asyul Sutan Saidi, Z., Salit, M. S., & Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746–755. https://doi.org/10.1016/j.ijbiomac.2019.11.011

  • Jusoh, M. S. M., Nordin, M. N., & Ahamad, W. M. A. W. (2021). Comparison study on fibre and cocopeat from young coconut husks and old coconut husks. Advances in Agricultural and Food Research Journal, 2(2), Article a0000216. https://doi.org/10.36877/aafrj.a0000216

  • Kaewtatip, K., & Tanrattanakul, V. (2012). Structure and properties of pregelatinized cassava starch/kaolin composites. Materials and Design, 37, 423–428. https://doi.org/10.1016/j.matdes.2011.12.039

  • Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2022). Biocomposite of cassava starch-cymbopogan citratus fibre: Mechanical, thermal and biodegradation properties. Polymers, 14(3), Article 514. https://doi.org/10.3390/polym14030514

  • Khalaf, Y., El Hage, P., Dimitrova Mihajlova, J., Bergeret, A., Lacroix, P., & El Hage, R. (2021). Influence of agricultural fibres size on mechanical and insulating properties of innovative chitosan-based insulators. Construction and Building Materials, 287, Article 123071. https://doi.org/10.1016/j.conbuildmat.2021.123071

  • Liu, Y., Liang, Z., Liao, L., & Xiong, J. (2022). Effect of sisal fibre on retrogradation and structural characteristics of thermoplastic cassava starch. Polymers and Polymer Composites, 30, Article 09673911221080363. https://doi.org/10.1177/09673911221080363

  • Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., De Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fibre: Part II - Structure and properties. Carbohydrate Polymers, 102(1), 576–583. https://doi.org/10.1016/j.carbpol.2013.11.020

  • Madhumitha, G., Fowsiya, J., Mohana Roopan, S., & Thakur, V. K. (2018). Recent advances in starch–clay nanocomposites. International Journal of Polymer Analysis and Characterisation, 23(4), 331–345. https://doi.org/10.1080/1023666X.2018.1447260

  • Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibres, 7(4), Article 32. https://doi.org/10.3390/fib7040032

  • Mina, J. H., Valadez, A., Franco, P. J. H., & Toledano, T. (2009). Influencia del tiempo de almacenamiento en las propiedades estructurales de un almidón termoplástico de yuca (TPS) [Influence of storage time on the structural properties of a cassava thermoplastic starch (TPS)]. Ingeniería y Competitividad, 11(2), 1-26. https://doi.org/10.25100/iyc.v11i2.2461

  • Mohamed, W. Z. W., Baharum, A., Ahmad, I., Abdullah, I., & Zakaria, N. E. (2018). Effects of fibre size and fibre content on mechanical and physical properties of Mengkuang reinforced thermoplastic natural rubber composites. BioResources, 13(2), 2945–2959. https://doi.org/10.15376/biores.13.2.2945-2959

  • Mo, X. Z., Zhong, Y. X., Liang, C. Q., & Yu, S. J. (2010). Studies on the properties of banana fibers-reinforced thermoplastic cassava starch composites: Preliminary results. Advanced Materials Research, 87–88, 439–444. https://doi.org/10.4028/www.scientific.net/AMR.87-88.439

  • Monteiro, S. N., Calado, V., Rodriguez, R. J. S., & Margem, F. M. (2012). Thermogravimetric behaviour of natural fibres reinforced polymer composites-An overview. Materials Science and Engineering A, 557, 17–28. https://doi.org/10.1016/j.msea.2012.05.109

  • Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2017). Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers, 157, 1094–1104. https://doi.org/10.1016/j.carbpol.2016.10.073

  • Moura, A. D. S., Demori, R., Leão, R. M., Frankenberg, C. L. C., & Santana, R. M. C. (2019). The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Materials Today Communications, 18, 191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006

  • Polat, S., Uslu, M. K., Aygün, A., & Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267–276. https://doi.org/10.1016/j.jfoodeng.2012.12.017

  • Prachayawarakorn, J., Limsiriwong, N., Kongjindamunee, R., & Surakit, S. (2012). Effect of agar and cotton fiber on properties of thermoplastic waxy rice starch composites. Journal of Polymers and the Environment, 20(1), 88–95. https://doi.org/10.1007/s10924-011-0371-8

  • Prachayawarakorn, J., Ruttanabus, P., & Boonsom, P. (2011). Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. Journal of Polymers and the Environment, 19(1), 274–282. https://doi.org/10.1007/s10924-010-0273-1

  • Pradeep, M., Binoy, R. F., Yaswanth, S., Pullan, T. T., & Joseph, M. (2022). Investigations on chitin and coconut fibre reinforcements on mechanical and moisture absorption properties of corn starch bioplastics. Materials Today: Proceedings, 58, 65-70. https://doi.org/10.1016/j.matpr.2021.12.585

  • Prakash, K. B., Fageehi, Y. A., Saminathan, R., Manoj Kumar, P., Saravanakumar, S., Subbiah, R., Arulmurugan, B., & Rajkumar, S. (2021). Influence of fiber volume and fibre length on thermal and flexural properties of a hybrid natural polymer composite prepared with banana stem, pineapple leaf, and s-glass. Advances in Materials Science and Engineering, 2021, Article 6329400. https://doi.org/10.1155/2021/6329400

  • Razali, N., Salit, M. S., Jawaid, M., Ishak, M. R., & Lazim, Y. (2015). A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: Effect of fibre maturity. BioResources, 10(1), 1803–1823. https://doi.org/10.15376/biores.10.1.1803-1824

  • Rivadeneira-Velasco, K. E., Utreras-Silva, C. A., Díaz-Barrios, A., Sommer-Márquez, A. E., Tafur, J. P., & Michell, R. M. (2021). Green nanocomposites based on thermoplastic starch: A review. Polymers, 13(19), Article 3227. https://doi.org/10.3390/polym13193227

  • Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289. https://doi.org/10.1016/j.matdes.2013.01.048

  • Salasinska, K., & Ryszkowska, J. (2015). The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fibre composites. Composite Interfaces, 22(1), 39–50. https://doi.org/10.1080/15685543.2015.984521

  • Santos, B. H. D. Prado, K. D. S. D., Jacinto, A. A., & Spinace, M. A. D. S. (2018). Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch. Journal of Renewable Materials, 6(2), 176–182. https://doi.org/10.7569/JRM.2018.634101

  • Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106

  • Sarifuddin, N., Ismail, H., & Ahmad, Z. (2012). Effect of fibre loading on properties of thermoplastic sago starch/kenaf core fibre biocomposites. BioResources, 7(3), 4294–4306. https://doi.org/10.15376/biores.7.3.4294-4306

  • Seth, S. A., Aji, I. S., & Tokan, A. (2018). Effects of particle size and loading on tensile and flexural properties of polypropylene reinforced doum palm shell particles composites. Technology, and Sciences (ASRJETS) American Scientific Research Journal for Engineering, 44(1), 231–239.

  • Syafiq, R., Sapuan, S. M., Zuhri, M. Y. M., Ilyas, R. A., Nazrin, A., Sherwani, S. F. K., & Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers, 12(10), Article 2403. https://doi.org/10.3390/polym12102403

  • Tajvidi, M., & Takemura, A. (2010). Thermal degradation of natural fibre-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(3), 281–298. https://doi.org/10.1177/0892705709347063

  • Tharanathan, R. N. (2005). Starch - Value addition by modification. Critical Reviews in Food Science and Nutrition, 45(5), 371–384. https://doi.org/10.1080/10408390590967702

  • Travalini, A. P., Lamsal, B., Magalhaes, W. L. E., & Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115

  • Weerapoprasit, C., & Prachayawarakorn, J. (2019). Characterization and properties of biodegradable thermoplastic grafted starch films by different contents of methacrylic acid. International Journal of Biological Macromolecules, 123, 657–663. https://doi.org/10.1016/j.ijbiomac.2018.11.083

  • Wollerdorfer, M., & Bader, H. (1998). Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial Crops and Products, 8(2), 105–112. https://doi.org/10.1016/S0926-6690(97)10015-2

  • Yokesahachart, C., Yoksan, R., Khanoonkon, N., Mohanty, A. K., & Misra, M. (2021). Effect of jute fibres on morphological characteristics and properties of thermoplastic starch/biodegradable polyester blend. Cellulose, 28(9), 5513–5530. https://doi.org/10.1007/s10570-021-03921-8

  • Zhang, Y., & Han, J. H. (2006). Plasticisation of pea starch films with monosaccharides and polyols. Journal of Food Science, 71(6), 253–261. https://doi.org/10.1111/j.1750-3841.2006.00075.x

  • Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic starch processing and characteristics: A review. Critical Reviews in Food Science and Nutrition, 54(10), 1353–1370. https://doi.org/10.1080/10408398.2011.636156

  • Zullo, R., & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77(2), 376–383. https://doi.org/10.1016/j.carbpol.2009.01.007

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles