e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abdullah, A., Jamaludin, S. B., Noor, M. M., & Hussin, K. (2011). Composite cement reinforced coconut fibre: Physical and mechanical properties and fracture behaviour. Australian Journal of Basic and Applied Sciences, 5(7), 1228–1240.
Abraham, E., Deepa, B., Pothen, L. A., Cintil, J., Thomas, S., John, M. J., Anandjiwala, R., & Narine, S. S. (2013). Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92(2), 1477–1483. https://doi.org/10.1016/j.carbpol.2012.10.056
Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., Sugiarti, E., Sapuan, S. M., Ilyas, R. A., & Stephane, I. (2019). A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 93, 276–283. https://doi.org/10.1016/j.foodhyd.2019.02.012
Agyei-Tuffour, B., Asante, J. T., Nyankson, E., Dodoo-Arhin, D., Oteng-Peprah, M., Azeko, S. T., Azeko, A. S., Oyewole, O. K., & Yaya, A. (2021). Comparative analyses of rice husk cellulose fibre and kaolin particulate reinforced thermoplastic cassava starch biocomposites using the solution casting technique. Polymer Composites, 42(7), 3216–3230. https://doi.org/10.1002/pc.26052
Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S. M., & Khairul, M. D. (2011). Studying the effect of fibre size and fibre loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546–553. https://doi.org/10.1177/0731684411399141
AL-Hassan, A. A., & Norziah, M. H. (2017). Effect of transglutaminase induced crosslinking on the properties of starch/gelatin films. Food Packaging and Shelf Life, 13, 15–19. https://doi.org/10.1016/j.fpsl.2017.04.006
ASTM [American Society for Testing and Materials]. (2022). ASTM D638 Standard test method for tensile properties of plastics. ASTM International.
ASTM [American Society for Testing and Materials]. (2017). ASTM D790 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International.
Barkoula, N. M., Alcock, B., Cabrera, N. O., & Peijs, T. (2008). Flame-retardancy properties of intumescent ammonium poly(Phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers and Polymer Composites, 16(2), 101–113. https://doi.org/10.1002/pc
Campos, A., Sena Neto, A. R., Rodrigues, V. B., Luchesi, B. R., Mattoso, L. H. C., & Marconcini, J. M. (2018). Effect of raw and chemically treated oil palm mesocarp fibres on thermoplastic cassava starch properties. Industrial Crops and Products, 124, 149–154. https://doi.org/10.1016/j.indcrop.2018.07.075
Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A., & Bayer, I. S. (2015). Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Applied Materials and Interfaces, 7(6), 3742–3753. https://doi.org/10.1021/am508515z
Chotiprayon, P., Chaisawad, B., & Yoksan, R. (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121
Dang, K. M., & Yoksan, R. (2021). Thermoplastic starch blown films with improved mechanical and barrier properties. International Journal of Biological Macromolecules, 188, 290–299. https://doi.org/10.1016/j.ijbiomac.2021.08.027
Delli, E., Giliopoulos, D., Bikiaris, D. N., & Chrissafis, K. (2021). Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites. Composite Structures, 263, Article 113678. https://doi.org/10.1016/j.compstruct.2021.113678
Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2021a). Extraction and characterization of natural cellulosic fibre from pandanus amaryllifolius leaves. Polymers, 13(23), Article 4171. https://doi.org/10.3390/polym13234171
Diyana, Z. N., Jumaidin, R., Selamat, M. Z., & Suan, M. S. M. (2021b). Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties. International Journal of Biological Macromolecules, 190, 224–232. https://doi.org/10.1016/j.ijbiomac.2021.08.201
Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 63, 76–84. https://doi.org/10.1016/j.compositesa.2014.04.003
Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers and Polymers, 18(1), 162–171. https://doi.org/10.1007/s12221-017-6251-7
Estrada-Monje, A., Alonso-Romero, S., Zitzumbo-Guzmán, R., Estrada-Moreno, I. A., & Zaragoza-Contreras, E. A. (2021). Thermoplastic starch-based blends with improved thermal and thermomechanical properties. Polymers, 13(23), Article 4263. https://doi.org/10.3390/polym13234263
Hafila, K. Z., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., & Yusof, F. A. M. (2022). Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. International Journal of Biological Macromolecules, 194, 851–860. https://doi.org/10.1016/j.ijbiomac.2021.11.139
Halal, S. L. M. E., Zavareze, E. D. R., Rocha, M. D., Pinto, V. Z., Nunes, M. R., Luvielmo, M. D. M., & Prentice, C. (2016). Films based on protein isolated from croaker (Micropogonias furnieri) and palm oil. Journal of the Science of Food and Agriculture, 96(7), 2478–2485. https://doi.org/10.1002/jsfa.7368
Hasan, M., Gopakumar, D. A., Olaiya, N. G., Zarlaida, F., Alfian, A., Aprinasari, C., Alfatah, T., Rizal, S., & Khalil, H. P. S. A. (2020). Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. International Journal of Biological Macromolecules, 156, 896–905. https://doi.org/10.1016/j.ijbiomac.2020.04.039
Hassan, M. M., Le Guen, M. J., Tucker, N., & Parker, K. (2019). Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA. Cellulose, 26(7), 4463–4478. https://doi.org/10.1007/s10570-019-02393-1
Hazrol, M. D., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Wahab, N. I. A. (2021). Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers, 13(2), Article 242. https://doi.org/10.3390/polym13020242
Ilyas, R. A., & Sapuan, S. M. (2020a). Biopolymers and biocomposites: Chemistry and technology. Current Analytical Chemistry, 16(5), 500–503. https://doi.org/10.2174/157341101605200603095311
Ilyas, R. A., & Sapuan, S. M. (2020b). The preparation methods and processing of natural fibre bio-polymer composites. Current Organic Synthesis, 16(8), 1068–1070. https://doi.org/10.2174/157017941608200120105616
Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 202, 186–202. https://doi.org/10.1016/j.carbpol.2018.09.002
Ilyas, R. A., Zuhri, M. Y. M., Norrrahim, M. N. F., Misenan, M. S. M., Jenol, M. A., Samsudin, S. A., Nurazzi, N. M., Asyraf, M. R. M., Supian, A. B. M., Bangar, S. P., Nadlene, R., Sharma, S., & Omran, A. A. B. (2022). Natural fiber-reinforced polycaprolactone green and hybrid biocomposites for various advanced applications. Polymers, 14(1), Article 182. https://doi.org/10.3390/polym14010182
Jacob, G. C., Starbuck, J. M., Fellers, J. F., & Simunovic, S. (2005). Effect of fibre volume fraction, fibre length and fibre tow size on the energy absorption of chopped carbon fibre-polymer composites. Polymer Composites, 26(3), 293–305. https://doi.org/10.1002/pc.20100
Javaid, M. A., Zia, K. M., Zafar, K., Khosa, M. K., Akram, N., Ajmal, M., Imran, M., & Iqbal, M. N. (2020). Synthesis and molecular characterisation of chitosan/starch blends based polyurethanes. International Journal of Biological Macromolecules, 146, 243–252. https://doi.org/10.1016/j.ijbiomac.2019.12.234
Jumaidin, R., Diah, N. A., Ilyas, R. A., Alamjuri, R. H., & Yusof, F. A. M. (2021). Processing and characterisation of banana leaf fibre reinforced thermoplastic cassava starch composites. Polymers, 13, Article 1420. https://doi.org/10.3390/polym13091420
Jumaidin, R., Khiruddin, M. A. A., Asyul Sutan Saidi, Z., Salit, M. S., & Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746–755. https://doi.org/10.1016/j.ijbiomac.2019.11.011
Jusoh, M. S. M., Nordin, M. N., & Ahamad, W. M. A. W. (2021). Comparison study on fibre and cocopeat from young coconut husks and old coconut husks. Advances in Agricultural and Food Research Journal, 2(2), Article a0000216. https://doi.org/10.36877/aafrj.a0000216
Kaewtatip, K., & Tanrattanakul, V. (2012). Structure and properties of pregelatinized cassava starch/kaolin composites. Materials and Design, 37, 423–428. https://doi.org/10.1016/j.matdes.2011.12.039
Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2022). Biocomposite of cassava starch-cymbopogan citratus fibre: Mechanical, thermal and biodegradation properties. Polymers, 14(3), Article 514. https://doi.org/10.3390/polym14030514
Khalaf, Y., El Hage, P., Dimitrova Mihajlova, J., Bergeret, A., Lacroix, P., & El Hage, R. (2021). Influence of agricultural fibres size on mechanical and insulating properties of innovative chitosan-based insulators. Construction and Building Materials, 287, Article 123071. https://doi.org/10.1016/j.conbuildmat.2021.123071
Liu, Y., Liang, Z., Liao, L., & Xiong, J. (2022). Effect of sisal fibre on retrogradation and structural characteristics of thermoplastic cassava starch. Polymers and Polymer Composites, 30, Article 09673911221080363. https://doi.org/10.1177/09673911221080363
Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., De Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fibre: Part II - Structure and properties. Carbohydrate Polymers, 102(1), 576–583. https://doi.org/10.1016/j.carbpol.2013.11.020
Madhumitha, G., Fowsiya, J., Mohana Roopan, S., & Thakur, V. K. (2018). Recent advances in starch–clay nanocomposites. International Journal of Polymer Analysis and Characterisation, 23(4), 331–345. https://doi.org/10.1080/1023666X.2018.1447260
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibres, 7(4), Article 32. https://doi.org/10.3390/fib7040032
Mina, J. H., Valadez, A., Franco, P. J. H., & Toledano, T. (2009). Influencia del tiempo de almacenamiento en las propiedades estructurales de un almidón termoplástico de yuca (TPS) [Influence of storage time on the structural properties of a cassava thermoplastic starch (TPS)]. Ingeniería y Competitividad, 11(2), 1-26. https://doi.org/10.25100/iyc.v11i2.2461
Mohamed, W. Z. W., Baharum, A., Ahmad, I., Abdullah, I., & Zakaria, N. E. (2018). Effects of fibre size and fibre content on mechanical and physical properties of Mengkuang reinforced thermoplastic natural rubber composites. BioResources, 13(2), 2945–2959. https://doi.org/10.15376/biores.13.2.2945-2959
Mo, X. Z., Zhong, Y. X., Liang, C. Q., & Yu, S. J. (2010). Studies on the properties of banana fibers-reinforced thermoplastic cassava starch composites: Preliminary results. Advanced Materials Research, 87–88, 439–444. https://doi.org/10.4028/www.scientific.net/AMR.87-88.439
Monteiro, S. N., Calado, V., Rodriguez, R. J. S., & Margem, F. M. (2012). Thermogravimetric behaviour of natural fibres reinforced polymer composites-An overview. Materials Science and Engineering A, 557, 17–28. https://doi.org/10.1016/j.msea.2012.05.109
Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2017). Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers, 157, 1094–1104. https://doi.org/10.1016/j.carbpol.2016.10.073
Moura, A. D. S., Demori, R., Leão, R. M., Frankenberg, C. L. C., & Santana, R. M. C. (2019). The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Materials Today Communications, 18, 191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006
Polat, S., Uslu, M. K., Aygün, A., & Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267–276. https://doi.org/10.1016/j.jfoodeng.2012.12.017
Prachayawarakorn, J., Limsiriwong, N., Kongjindamunee, R., & Surakit, S. (2012). Effect of agar and cotton fiber on properties of thermoplastic waxy rice starch composites. Journal of Polymers and the Environment, 20(1), 88–95. https://doi.org/10.1007/s10924-011-0371-8
Prachayawarakorn, J., Ruttanabus, P., & Boonsom, P. (2011). Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. Journal of Polymers and the Environment, 19(1), 274–282. https://doi.org/10.1007/s10924-010-0273-1
Pradeep, M., Binoy, R. F., Yaswanth, S., Pullan, T. T., & Joseph, M. (2022). Investigations on chitin and coconut fibre reinforcements on mechanical and moisture absorption properties of corn starch bioplastics. Materials Today: Proceedings, 58, 65-70. https://doi.org/10.1016/j.matpr.2021.12.585
Prakash, K. B., Fageehi, Y. A., Saminathan, R., Manoj Kumar, P., Saravanakumar, S., Subbiah, R., Arulmurugan, B., & Rajkumar, S. (2021). Influence of fiber volume and fibre length on thermal and flexural properties of a hybrid natural polymer composite prepared with banana stem, pineapple leaf, and s-glass. Advances in Materials Science and Engineering, 2021, Article 6329400. https://doi.org/10.1155/2021/6329400
Razali, N., Salit, M. S., Jawaid, M., Ishak, M. R., & Lazim, Y. (2015). A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: Effect of fibre maturity. BioResources, 10(1), 1803–1823. https://doi.org/10.15376/biores.10.1.1803-1824
Rivadeneira-Velasco, K. E., Utreras-Silva, C. A., Díaz-Barrios, A., Sommer-Márquez, A. E., Tafur, J. P., & Michell, R. M. (2021). Green nanocomposites based on thermoplastic starch: A review. Polymers, 13(19), Article 3227. https://doi.org/10.3390/polym13193227
Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289. https://doi.org/10.1016/j.matdes.2013.01.048
Salasinska, K., & Ryszkowska, J. (2015). The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fibre composites. Composite Interfaces, 22(1), 39–50. https://doi.org/10.1080/15685543.2015.984521
Santos, B. H. D. Prado, K. D. S. D., Jacinto, A. A., & Spinace, M. A. D. S. (2018). Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch. Journal of Renewable Materials, 6(2), 176–182. https://doi.org/10.7569/JRM.2018.634101
Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106–1124. https://doi.org/10.3390/polym7061106
Sarifuddin, N., Ismail, H., & Ahmad, Z. (2012). Effect of fibre loading on properties of thermoplastic sago starch/kenaf core fibre biocomposites. BioResources, 7(3), 4294–4306. https://doi.org/10.15376/biores.7.3.4294-4306
Seth, S. A., Aji, I. S., & Tokan, A. (2018). Effects of particle size and loading on tensile and flexural properties of polypropylene reinforced doum palm shell particles composites. Technology, and Sciences (ASRJETS) American Scientific Research Journal for Engineering, 44(1), 231–239.
Syafiq, R., Sapuan, S. M., Zuhri, M. Y. M., Ilyas, R. A., Nazrin, A., Sherwani, S. F. K., & Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers, 12(10), Article 2403. https://doi.org/10.3390/polym12102403
Tajvidi, M., & Takemura, A. (2010). Thermal degradation of natural fibre-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(3), 281–298. https://doi.org/10.1177/0892705709347063
Tharanathan, R. N. (2005). Starch - Value addition by modification. Critical Reviews in Food Science and Nutrition, 45(5), 371–384. https://doi.org/10.1080/10408390590967702
Travalini, A. P., Lamsal, B., Magalhaes, W. L. E., & Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115
Weerapoprasit, C., & Prachayawarakorn, J. (2019). Characterization and properties of biodegradable thermoplastic grafted starch films by different contents of methacrylic acid. International Journal of Biological Macromolecules, 123, 657–663. https://doi.org/10.1016/j.ijbiomac.2018.11.083
Wollerdorfer, M., & Bader, H. (1998). Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial Crops and Products, 8(2), 105–112. https://doi.org/10.1016/S0926-6690(97)10015-2
Yokesahachart, C., Yoksan, R., Khanoonkon, N., Mohanty, A. K., & Misra, M. (2021). Effect of jute fibres on morphological characteristics and properties of thermoplastic starch/biodegradable polyester blend. Cellulose, 28(9), 5513–5530. https://doi.org/10.1007/s10570-021-03921-8
Zhang, Y., & Han, J. H. (2006). Plasticisation of pea starch films with monosaccharides and polyols. Journal of Food Science, 71(6), 253–261. https://doi.org/10.1111/j.1750-3841.2006.00075.x
Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic starch processing and characteristics: A review. Critical Reviews in Food Science and Nutrition, 54(10), 1353–1370. https://doi.org/10.1080/10408398.2011.636156
Zullo, R., & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77(2), 376–383. https://doi.org/10.1016/j.carbpol.2009.01.007
ISSN 1511-3701
e-ISSN 2231-8542