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FGM sandwich plate and include different 
parameters. Parameters included are 
graded distributions of porosity, power-law 
index, core metal type, and aspect ratios. A 
numerical investigation using finite element 
analysis (FEA) and the modal analysis 
was conducted with the assistance of the 
commercial ANSYS-2020-R2 software 
to validate the analytical solution. To 
detect the various parameters influencing 
the fundamental frequencies of sandwich 
plate comprehensive numerical results are 
presented in dimensionless tabular and 
graphical forms. The results reveal that the 

ABSTRACT

The current work presents a free vibration analysis of a simply supported rectangular 
functionally graded sandwich plate using a new analytical model. The core of the 
sandwich plate is made up of porous metal, and the top and bottom faces are made up of 
homogenous materials. The core metal properties are assumed to be porosity dependent 
and graded in the thickness direction according to a simple power-law distribution in terms 
of the volume fractions of the constituents. The contribution of this paper is to evaluate 
the performance of functionally graded porous materials (FGPMs) as it is used for many 
biomedical applications, particularly in tissue engineering. Theoretical formulations are 
based on the classical plate theory to find the free vibration characteristics of the imperfect 
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frequency parameter of the sandwich plate increases with the increase of the porosity 
parameter and number of the constraints in the boundary conditions. Furthermore, the 
increase in the number of layers leads to an increase in the accuracy of the results for the 
same FGM core thickness. An accepted agreement can be observed between the proposed 
analytical solution and numerical results with a maximum error discrepancy of 8%.

Keywords: Free vibration, frequency, functionally graded, porous, sandwich plate

INTRODUCTION

Functionally graded materials (FGMs) are composites with a continuous variation of 
material properties from one surface to another, thus eliminating the stress concentration 
found in laminated composites (Thai et al., 2013). Due to its excellent stiffness and 
toughness and high strength-to-weight ratio, the sandwich structure can be used in many 
applications, such as automobiles, ship development, transportation, and airlines. This 
feature has attracted many considerations, and many researchers have conducted continuous 
static and dynamic inspections of structural engineering under various environmental 
conditions. Consequently, due to the excellent performance, the use of sandwich structures 
in the field of micro auxiliary frames is continuously developing (Hadji et al., 2011). 
Therefore, in a wide range of FGM material types and benefits, it is vital to explore the static 
and dynamic behavior of auxiliary personnel with FGM, such as beams and plates (Kiani et 
al., 2011; Anderson, 2003). Due to technical problems in the manufacturing process, pores 
and micropores may be formed inside the FGM plate, which may cause material quality 
degradation. The assembly strategy of FGM’s is a creative area. The sintering strategy is 
most widely used because of its cost-saving advantage ratio. In any case, the sintering cycle 
empowers the development of microvoids or porosities (Kumar et al., 2021). Although 
crucial improvements have been observed here recently, porosity is still an ongoing defect 
in FGM. As mentioned above, porosity results from the assembly cycle and can reduce the 
material’s quality. Therefore, this defect’s effect is to consider the influence of pores on the 
unique properties of the transfer pores of the FGM structure (Muc & Flis, 2021). Wang 
and Zu (2017) considered a rectangular plate’s vibration behavior mainly evaluated, pores, 
and moves in a warm area. The vibration analysis of a porous functionally graded plate 
made of a mixture of Aluminum (Al) and alumina (Al2O3) installed in an elastic medium 
was introduced by Hayat and Meriem (2019). Zhang et al. (2019) changed the topological 
design, porosity, and mechanical behavior of functionally graded porous metal biomaterials 
with added design. Singh and Harsha (2020) studied the effect of porosity and temperature 
on sandwich S-FGM plates.  

Dang et al. (2018) also discussed the free vibration characteristics, which can be 
inferred from the pores in the FGM test of the rotating graphene-enhanced permeable 
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nanocomposite barrel shell. Regarding the porosity distribution, Nguyen et al. (2018) 
studied the mechanical conduction of porous FGP. Therefore, they considered two different 
porosities, both of which move in the thickness direction (specifically, evenly distributed 
and unevenly distributed). Zhang and Wang (2017) created eight other porous material 
structures with varying pore distributions, including gradient distributions. They exposed 
them to some mechanical tests to evaluate essential material properties, such as Young’s 
modulus. Functionally graded porous materials combine the qualities of FGM and porous 
materials. In addition to the extremely high stiffness-to-weight ratio, they also have 
excellent mechanical properties to clarify why these materials are widely used in various 
fields (Kiani & Eslami, 2012). Usually, the variation of porosity through the thickness of 
porous plates causes a smooth change in mechanical properties. Therefore, this type of 
material has received wide applications in aerospace, marine, and biomedical application 
(Rezaei & Said 2015). Although there are exceptional circumstances, the material’s strength 
will decrease due to these holes’ presence, which should be kept in mind for mechanical 
behavior (Merdaci, 2019). 

Kim et al. (2019) proposed three porosity distributions in the thickness direction, 
together with the research developed by Coskun et al. (2019) and Zhao et al. (2019). The 
inspiration for the closure came from the uniform distribution of Merdaci (2019). His 
research recognized that typical functionally graded ceramic/metal square plates have 
different porosity distributions throughout the thickness. Numerous studies on free vibration 
for isotropic and functionally graded plates have been reported. Chakraverty and Pradhan 
(2014) studied the free vibration of thin FG rectangular plates in complex environments. 
Wattanasakulponga and Ungbhakorn (2014) used a combination of linear and nonlinear 
analysis to study the influence of porosity parameters on the frequency parameters of FGM 
constrained end beams. Although some studies have been conducted on sandwich structures 
with FGM cores to evaluate their bending behavior (Tossapanon & Wattanasakulpong, 
2017; Meiche et al., 2011; Neves et al., 2013) and flexural strength (Kapuria et al., 2008; 
Lashkari & Rahmani, 2016), sandwich structures’ free vibration and stability issues 
fabricated by functionally gradient have been studied. However, investigations on the free 
vibration of FGM structures with porous metal topology are still limited. The objective 
of the present research is to investigate the free vibration analysis of an imperfect simply-
supported sandwich plate. In this paper, we assume that the functionally graded part is made 
from one constituent material, whose material properties are changed due to various porosity 
distribution and graded in the thickness direction according to a power-law distribution. A 
new representation of the classical plate theory (CPT) is developed to find the free vibration 
features according to various FGM parameters. The proposed mathematical model used 
for approximating FGM core properties, such as Young’s modulus (E) and material density 
(ρ) equations, is verified by comparisons between material property results obtained from 
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volume fraction analysis and the proposed models. The paper also explores the influence 
of some parameters on the free vibration of the functionally graded sandwich plates such 
as power-law index, porous metal type, porosity ratio, and length to thickness ratios. By 
using the FEA method represented by ANSYS software, results of natural frequency and 
mode shapes of the imperfect FGM sandwich plate with different boundary conditions 
are presented. Furthermore, the core part is divided into (2-16) layers, and the frequency 
analysis is performed for both square and rectangular plates to identify the effect of the 
increasing number of layers on FG structure performance. The numerical results presented 
herein for functionally graded porous materials are not available in the literature, and hence, 
should be of interest to the industrial applications.

MATERIALS AND METHOD 

Consider a thin rectangular FGM plate composed of ceramic and metal, in which the upper 
surface is metal-rich, and the underlying surface is ceramic-rich, respectively. The FGM 
plate is supposed to carry porosities that disperse evenly or unevenly along the plate-
thickness direction (Figure 1). The plate’s length, width, and thickness are denoted by a, b 
and h, respectively. A Cartesian coordinate system (O, x, y, z) on the plate’s middle surface 
is adopted to describe the plate motion, where x and y define the in-plane coordinates and z 
denotes the out-of-plane coordinate of the plate. The origin O is at one of the plate corners; 
however, the volume fraction of FG plate layers can be represented either in exponential 
law, sigmoid law, or power-law. The ceramic volume fraction Vc is assumed to follow a 
simple power distribution as Equation 1 (Natarajan & Manickam, 2012).

Vc(z) = �
z + h

2
h

�

k

    	                                                                          	        [1]

The volume fraction sum of metal and ceramic is stated as: 𝑉𝑉𝑚𝑚(𝑧𝑧) + 𝑉𝑉𝑐𝑐(𝑧𝑧) = 1, , where  
and 𝑉𝑉𝑐𝑐  are volume fractions of metal and ceramic, respectively is power-law variation 
index and is a non-negative variable parameter, in which ϵ [0, ∞). The value of  equal 
to zero represents a fully ceramic plate, whereas infinite  indicates a fully metallic plate.

Assuming porosities disperse equally in the metal and ceramic phases, the general 
material property of the imperfect FGM plate, with a porosity volume fraction β (β <<1), 
takes the modified form as Equation 2.

				            [2]
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In Equation 2, and 𝑃𝑃𝑚𝑚  ; are the values of material properties of ceramic and metal, 
constituents of the FG plate, respectively. For our present formulations, the material 
properties, viz. Young’s modulus (E) and mass density (ρ) are taken to vary along thickness 
direction except for Poisson’s ratio (ν), which will assume to be constant for simplicity, 
based on previous studies, reported by Delale and Erdogan (Meziane et al., 2014).

In general, the two-dimensional plate theories can be categorized into two types: (1) 
classical plate theory, in which the transverse shear deformation consequences are neglected, 
and (2) shear deformation plate theories. In the two-dimensional theory, the free vibration, 
thermal, and stability problems of the FGM structures, the displacement is represented in 
thickness. In contrast, the lateral displacement is independent of the lateral (or thickness) 
coordinates. The results of the mathematical model in the coupled governing equation are 
independent of lateral displacement. Therefore, this type of equation’s analytical solution 
may be simpler than the three-dimensional elasticity theory (Ambartsumyan et al., 1970). 

By using the classical plate theory (CPT), the displacement fields of FG plates across 
the plate thickness at a distance z away from the middle surface are defined as Equation 3 
(Chi & Chung, 2006; Latifi et al., 2013).

                                                                                                                         [3]

Where ux, uy, and uz are the displacement of a point on the reference plane in the x, y, and 
z directions, respectively, and w represents the mid-plane lateral deflection (x-y plane). 
The Kirchoff model is not considered the effect of shear deformation due to bending and 
plane elongation. The non-zero linear strains associated with the displacement field can 
be expressed as Equation 4.

                                                                                            [4]

Where, 𝜖𝜖𝑥𝑥𝑥𝑥  and 𝜖𝜖𝑦𝑦𝑦𝑦  ; are the components of the strain in x and y directions, respectively, 
and 𝛾𝛾𝑥𝑥𝑥𝑥  ; is the shear strain. Based on CPT, the stress-strain relations are given by Equation 
5 (Wadee, 2001).
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                                                                                                            [5]

The linear constitutive relations of a plate, such as the bending and twisting moments   
Mxx , Myy , and Mxy  respectively on a plate element in the pure bending case can be written 
as Equation 6 (Baferani et al., 2011).

                                                                     [6]

Where (Equation 7), 

D =
Eh3

12(1 − ν2)                                                                                                                                       [7]

the flexural rigidity of the plate. Alternatively, the second-order equilibrium equation of 
the Kirchhoff plate theory may be written as Equation 8.

                                                                                                       [8]

Substituting the expressions of bending and twisting moments in Equation 6, we can 
obtain the equation of equilibrium in terms of deflections (w) of the plate as Equation 9.

                                                                                           [9]

Where (Io) is the inertial coefficient of the plate.
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Modeling Analysis for FGM Porous Core

This section describes a new mathematical model used to evaluate the free vibration of 
the rectangular FG plate. By considering the imperfect FGM plate made mainly from one 
porous metal with a porosity volume fraction, (β << 1) distributed equally in the core 
metal phase and graded through the plate thickness direction according to a power-law 
distribution. Accordingly, the suggested rule of the mixture is proposed as Equation 10.

                                                                                      [10]                                                                                                                                          

In the case of a homogenous plate (β=0), for the imperfect FGM plate, Young’s modulus 
(E) and material density equations can be expressed as Equations 11 and 12.

        	                                                                                                  [11]

          	                                                                                                   [12]

To verify the proposed mathematical models (Equations 11 & 12) used for 
approximating material properties of imperfect FGM plates, this can be accomplished 
by comparisons between material property results secured directly from volume fraction 
analysis and the proposed models. Consider that the FGM plate made from Aluminum 
(Al) as porous metal whose material properties are:  Em = 70 GPa, ρ=2702 Kg/m3; υ =0.3 
(Wattanasakulpong and Chaikittiratana, 2015). Table 1 shows the values of mass per unit 
length of the FGM plate.

From the comparisons in Table 1, it can be seen that the results predicted by the 
proposed models match well with those obtained from the volume fraction analysis. 
Additionally, to predict Young’s modulus (E) across the plate thickness, Figure 2 shows 
the material properties profile of the imperfect FGM plates using Equations 11 and 12.

(a) Cartesian coordinate system (b) Porosity with even distribution

Figure 1. A rectangular FGM plate
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k Material Volume fraction 
analysis 
Mass= ρ*Vp

The proposed models 
(Equation 12)

1,2……..n Perfect FGM (β=0), 
Vp =1

2700*1=2700 2700

Imperfect FGM, (β 
=0.1), Vp=1-0.1= 0.9

2700*0.9=2430 2700- 700*0.1=2430

Imperfect FGM, 
(β=0.2) ,Vp=1-0.2 =0.8

2700*0.8=2160 2700 – 0.2*2700 =2160

Imperfect FGM, 
(β=0.3) ,Vp=1-0.3 =0.7

2700*0.7=1890 2700-0.3*2700 = 1890

Imperfect FGM, 
(β=0.4) ,Vp=1-0.4 =0.6

2700*0.6=1620 2700 -0.4 *2700 =1620

Imperfect FGM, 
(β=0.5) ,Vp=1-0.5 =0.5

2700*0.5=1350 2700-0.5*2700 =1350

Table 1
Two different techniques used to calculate the mass density of perfect and imperfect cores

a) The modulus of elasticity (E) variation
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By using the CPT principle, the equations of motion that are convenient for the 
displacement components mentioned in Equation 5, including stiffness and inertia for 
vibration analysis of FGM plate, can be written as Equations 13-15:

D =
1

1 − v2 �  
h/2

−h/2
E(z) ⋅ z2dz                                                                                                              [13]

Df =
Eph3

12(1 − v2) −
βEph3

(1 − v2) �
1

(k + 3)
−

1
(k + 2)

+
1

4(k + 1)
� 

                                	
     										               [14]

                                                                                                                                                         

Io = � ρ(z)
h/2

−h/2
dz = ρp h �1 −  

 β
(k + 1) 

 �                                                                                            [15]

Where, ρp and Ep are the mass density and young modulus of the porous metal, respectively 
(Equation 16 & 17).

Df (
∂4w
∂x4 + 2

∂4w
∂x2 ⋅ ∂y2 +

∂4w
∂y4 ) + I0

∂2w
∂t2 = 0                                                                                          [16]

                     
                                                                                                                                                      

Figure 2. Power-law variation at porosity 10% of (a) Young’s modulus and (b) mass densities of the FG plate.

(b) The mass densities (ρ) variation
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									              	      [17]

Equation 17 can be solved by using the separation of the variables method by assuming 
the function of deflection as defined in Equation 18 (Al-Waily et al., 2020).

𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥,𝑦𝑦).𝑤𝑤(𝑡𝑡)                                                                                                               [18]     

Where, (t) is the deflection function of the plate to time, and ) is the deflection 
function of the sandwich in terms of x and y directions for a simply supported plate. 
Consider a rectangular plate of length a and width b with its four edges simply supported, 
as shown in Figure 2. To evaluate the behavior of deflection plate as a function of x and y 
directions that satisfies the boundary conditions w=0 and M=0; for all four edges, then, for 
the deflection equation of plate as a function of x and y direction, as Equation 19 (Leissa, 
1969).

w(x, y) = sin
mπx

a
. sin

nπy
b

 (m,n=1,2,3……….)                                                                      [19]

Then, by substituting Equation 17 into Equation 19, the suggested general equation 
of motion for FGM rectangular plate is obtained as Equation 20.                                                   

                 [20]

Equation 20 is a second-order ordinary differential equation. By comparison, Equation 
20 with the general equation of motion of a single degree of freedom for free undamped 
vibration structure, as Equation 21 (Natarajan & Manickam, 2012). 

𝜔𝜔𝑚𝑚𝑚𝑚2 𝑤𝑤(𝑡𝑡) +
∂2𝑤𝑤(𝑡𝑡)
∂𝑡𝑡2 = 0                                                                                                                    [21]      

The suggested equation of natural frequency for FGM rectangular plate can find the 
natural frequency as Equations 22 and 23.                                            

ω = ℎ �
Ao (πa )4+2Ao (πa )2(πb )2+Ao (πb )4

ρp (1− β
(k +1))

�
1/2

                                                                                                [22]
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Ao =
Ep

12(1 − v2)
−

βEp

(1 − v2)
�

1
k + 3

−
1

k + 2
+

1
4(k + 1)

� 
                                                                                 	

										               [23]

The dimensionless fundamental frequencies ψ for simply supported FGM square plate 
can be found as Equation 24.

𝜓𝜓 =
𝜔𝜔𝐿𝐿2

ℎ
�
∫ 𝜌𝜌(𝑧𝑧) 𝑑𝑑𝑑𝑑ℎ/2
−ℎ/2

∫ 𝐸𝐸(𝑧𝑧) 𝑑𝑑𝑑𝑑ℎ/2
−ℎ/2

=  
𝜔𝜔𝐿𝐿2

ℎ �
𝜌𝜌𝑝𝑝
𝐸𝐸𝑝𝑝

                                                                                                    [24]                

Modeling Analysis for FGM Sandwich Plate with FGM Porous Metal Core                                                                          

FGM sandwich plates are usually represented either in face sheet FGM and uniform core 
or uniform face sheet with FGM core. In this paper, the second type (sandwich plates with 
uniform skin and core FGM) is considered and analyzed to study the frequency response 
of FGM sandwich plates with different boundary conditions. The volume fraction of the 
FGM sandwich pate is assumed as Equation 25 (Cui et al., 2019).

  	                              		       [25]

For the material characteristics of FGM plate with porosity, they considered to vary 
continuously within the thickness of the plate according to the power-law distribution (k), 
(β): is the factor of the distribution of the porosity according to the plate thickness, hence 
for the even distribution of porosities inside the material, the young’s modulus E (z) and 
mass density ρ (z) of the imperfect FGM plate represented as given in Equations 13 and 
14, respectively.

Consider a sandwich plate of length a and width b with its four edges simply supported, 
comprise mainly from Porous metal core is considered as a functionally graded material 
owing to the variation of porous ratio inside the core metal while the upper and lower 
plate, both of them made of same homogenous material as shown in Figure 3, so the elastic 
constants and the mass density .

To derive the governing differential equation of motion of sandwich panels with an 
FGM core, Equations 5 and 6 are applied for each layer of the sandwich plate (upper face, 
core, and lower face), and reassemble them to Equation 11 as it will be discussed in the 
previous section. Assuming , the general representation for the flexural rigidity 
and inertia for the sandwich plate can be written as Equations 26-28.
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										                 [26]

           	     	
										               [27]

                                    	         	      [28]

Figure 3. Geometry configurations of FGM porous sandwich plate

To evaluate the natural frequency of the sandwich plate follows the same procedure 
mentioned in the rectangular plate in Equation 21 to obtain Equation 29.                                                

                                                                                      [29]      

To simplify (Equation 30),                    

                             	      [30]                                                                                                                                     



Pertanika J. Sci. & Technol. 29 (3): 1655 - 1682 (2021) 1667

Vibration Sandwich with Functionally Graded Porous Core

Numerical Investigation

The accuracy of the suggested analytical solution can be verified by employ numerical 
methods. Many numerical techniques are used to solve problems (Sadiq et al. 2020), but 
the most accurate is the FEA method (Reddy, 1993; Rao, 2004). In this work, the finite 
element method represented by the ANSYS program (Ver. 2020 R2) was used. A 3D model 
of the FG sandwich plate is built and the corresponding boundary conditions of the sides 
of the plate under modal analysis are applied as shown in Figure 4. The precision mesh 
size is selected and the model has meshed with an 8-node SOLID186 element type with a 
total number of elements 40000 as shown in Figure 5. The mechanical properties of the FG 
core are calculated using Equations 11 and 12, while the skin parts are assumed isotropic 
materials, then inserted into the examined model. In the connection area between the layers 
and between the layers and the sandwich plat’s skin, glue regulations should be made to 
prevent the development of the pedigree between the layers from respecting each other 
(Burlayenko & Sadowski, 2020). The modal analysis for the selected models is carried 
out to identify the free vibration characteristics (natural frequencies and the mode shapes) 
based on various parameters previously mentioned as shown in Figure 6. 

Figure 4. FGM Sandwich plate     
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Figure 6. View of Modal Analysis of FGM sandwich plate

Figure 5. Meshed Model

RESULTS AND DISCUSSION

In this work, a new mathematical model was derived to evaluate the free vibration 
characteristics of power-law simply supported FGM rectangular sandwich plates with 
even porosity distribution. Effects of various properties on frequency parameters are 
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investigated. The FGM part is composed of a porous metal core with volume fractions that 
change smoothly through the thickness direction. The natural frequencies are presented 
for the various metal cores types with a power-law variation. The commercially available 
software of ANSYS 2020 R2 was also used for verification of the analytical solution, 
and the obtained results were tabulated and plotted with multiple curves. The material 
characteristics of the FG core are presented in Table 2, simultaneously, the face sheet 
is considered made of Aluminum with a mass density of 2702 Kg/m3 and a modulus of 
elasticity of 70 GPa. The dimensions of plates are taken as a=b =0.5 m, the power-law 
distribution (k=0,0.5,1,2,5,10,50,100) and porosity factor (β = 0 to 0.4), the face sheet 
thickness is (1, 1.5, 2 and 2.5) mm and FG core heights (5, 6, 8, 10, 12, 20, and 25) mm.

Table 2 
Material properties of the FG core

FG core type Modula's of 
Elasticity (MPa)

Mass Density 
Kg/m3

Poison's
Ratio

Ref.

Polyethylene 1100 950 0.42 (Liu et al., 2015)
Peek - 30 % CF 7700 1410 0.44 (Bonnheim et al., 

2019)
Peek - 30 % GF 6300 1510 0.34 (Najim & Adwaa, 

2014)
Peek -1000 
natural

4400 1310 0.40 (Najim & Adwaa, 
2014)

Polyurethane 
foam

7.5 60 0 (Goel et al., 2013)

Foam Dytherm 3.0 100 0 (Goel et al., 2013)

To verify the accuracy of the suggested mathematical model in predicting the natural 
frequency of FG sandwich plates. Natural frequencies for the sandwich plate with various 
parameters such as aspect ratio, slenderness ratio, porous factor, FG core thickness, and face 
sheet thickness are presented in Tables 3-5. Once the natural frequency from Equation 30 
has been worked out, the fundamental frequency parameter of a simply supported square 
FGM sandwich plates with porous FG core with different thickness ratio can be calculated 
from the following Equation 31.

       								      
										               [31]

Where, ω is the natural frequency, L is the length of the plate and h is the total height of the 
sandwich plate. Suppose that ρo= 1 Kg/m3 and =1 MPa. Table 3 present analytical and 
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numerical results for the first nondimensional frequencies of the sandwich plate for various 
porosity parameters (β =0.1,0.2,0.3, and 0.4), power-law indices (k=0,0.5,1,2, and 5), and 
face sheet thickness (1,1.5,2 and 2.5 mm) for the FG core metal made of Polyethylene 
FGM core thickness 10 mm. Data shows that the core topology has a significant role in 
the frequency parameters as represented in Table 3-5. Fair agreements are found between 
analytical tests and numerical analyses with a difference of less than 8%. Table 4 gives 
results obtained by the analytical solution and FEA of the nondimensional frequency of 
rectangular sandwich plate with FG Polyethylene core, (FG core thickness 12 mm) with 
various porosity factors (β =0.1,0.2,0.3, and 0.4) , volume fraction index (k=0,0.5,1,2, and 
5) and by using five values of aspect ratio ( a/b = 0.25,0.5,0.75,1 and 2). 

It can also be seen that the natural frequencies decrease with increasing gradient index 
and increase the porous parameter due to the decrease in the material rigidity. An excellent 
agreement can be observed with a difference of up to 8%, and this percentage is affected 
by the power-law index and porous factor for the same FG plate thickness. Convergence 
of the non-dimensional frequencies of square FGM sandwich plate with Polyethylene 
porous core and aluminum face sheet (2 mm), subject to seven combinations of boundary 
conditions is presented in Table 5 with respect to thickness ratio (a/H =50) and various 
porosity factors. It is found that the value of frequency parameter increases with an increase 
in the number of constraints of the selected model; for example, at porous factor (β = 0.3) 
and with a gradient index (k = 2), the frequency parameter in the CCCC model is (6.523) 
while for CCCS it was (6.027), and CSCS equal (5.825), as for SSSS, the value was (5.436), 
for CCCF edge condition the frequency parameter became (3.894), while for FCFC and 
FSFS, the frequency parameter was (3.626) and (2.827) respectively. 

Table 3
The frequency parameter (ψ) of the sandwich plate with Polyethylene FGM core thickness 10 mm

porosity 
%

power-
law 
index 
(k)

face sheet thickness (mm)
1 1.5 2 2.5

Ana. Num. Ana. Num. Ana. Num. Ana. Num.

10 0 4.645 4.638 5.158 5.139 5.415 5.531 5.531 5.531
0.5 4.595 4.601 5.111 5.109 5.372 5.371 5.493 5.502
1 4.571 4.569 5.088 5.067 5.351 5.361 5.474 5.484
2 4.546 4.550 5.065 5.060 5.330 5.355 5.455 5.466
5 4.523 4.534 5.042 5.039 5.309 5.313 5.436 5.442
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Table 4
Analytical and Numerical results of the frequency parameter of the rectangular FG sandwich plate with   
Polyethylene core thickness 12 mm 

Table 3 (Continued)

porosity 
%

power-
law 
index
(k)

face sheet thickness (mm)
1 1.5 2 2.5

Ana. Num. Ana. Num. Ana. Num. Ana. Num.

20 0 4.806 4.810 5.308 5.340 5.550 5.489 5.652 5.691
0.5 4.697 4.690 5.207 5.225 5.459 5.431 5.571 5.588
1 4.645 4.651 5.158 5.188 5.415 5.386 5.531 5.506
2 4.594 4.589 5.110 5.092 5.371 5.297 5.492 5.477
5 4.546 4.553 5.064 5.078 5.329 5.245 5.454 5.382

30 0 4.986 4.978 5.472 5.511 5.696 5.680 5.782 5.219
0.5 4.807 4.911 5.308 5.479 5.550 5.622 5.652 5.145
1 4.724 4.696 5.231 5.099 5.481 5.579 5.5917 4.988
2 4.644 4.674 5.157 4.888 5.414 5.515 5.531 4.866
5 4.569 4.552 5.086 4.857 5.350 5.464 5.473 4.770

40 0 5.189 5.226 5.653 5.714 5.855 5.776 5.921 5.887
0.5 4.925 5.0996 5.416 5.686 5.646 5.681 5.738 5.686
1 4.806 4.947 5.308 5.562 5.550 5.590 5.652 5.450
2 4.696 4.775 5.205 5.441 5.458 5.422 5.570 5.499
5 4.593 4.694 5.109 5.215 5.370 5.299 5.492 5.456

a/b power-
law index 
(k)

porosity factor (β)
0.1 0.2 0.3 0.4

Ana. Num. Ana. Num. Ana. Num. Ana. Num.
0.25 0 3.2 3.3 3.3 3.3 3.4 3.4 3.5 3.5

0.5 3.2 3.2 3.2 3.3 3.3 3.4 3.4 3.5
1 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.4
2 3.2 3.2 3.2 3.2 3.2 3.3 3.2 3.3
5 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.3
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Table 4 (Continued)

a/b power-
law index 
(k)

porosity factor (β)
0.1 0.2 0.3 0.4

Ana. Num. Ana. Num. Ana. Num. Ana. Num.
0.5 0 3.8 3.8 3.9 3.8 4.0 4.1 4.1 4.1

0.5 3.8 3.7 3.8 3.8 3.9 4.0 4.0 4.1
1 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9
2 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.9
5 3.7 3.7 3.7 3.7 3.7 3.7 3.8 3.9

0.75 0 4.7 4.8 4.9 4.9 5.0 5.3 5.2 5.1
0.5 4.7 4.7 4.8 4.8 4.9 5.1 5.0 4.8
1 4.7 4.7 4.7 4.8 4.8 4.9 4.9 4.8
2 4.6 4.7 4.7 4.8 4.7 4.8 4.8 4.7
5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7

1 0 6.1 6.1 6.2 6.3 6.4 6.6 6.6 6.6
0.5 6.0 6.1 6.1 6.3 6.2 6.5 6.3 6.4
1 6.0 5.9 6.1 6.2 6.1 6.4 6.2 6.3
2 6.0 5.9 6.0 6.1 6.1 6.1 6.1 6.2
5 5.9 5.8 5.9 5.9 6.0 6.1 6.0 6.0

1.5 0 9.8 9.9 10.1 10.0 10.4 10.5 10.7 10.7
0.5 9.8 9.8 9.9 10.0 10.1 10.2 10.3 10.5
1 9.7 9.8 9.8 9.9 10.0 10.0 10.1 10.1
2 9.7 9.5 9.8 9.8 9.8 9.9 9.9 10.0
5 9.6 9.5 9.7 9.7 9.7 9.8 9.8 9.8

2 0 15.1 15.1 15.6 15.4 16.0 15.9 16.5 16.6
0.5 15.0 15.1 15.3 15.2 15.6 15.6 15.9 16.2
1 14.9 15.1 15.1 15.1 15.3 15.5 15.6 15.9
2 14.9 15.0 15.0 15.0 15.1 15.1 15.3 15.7
5 14.8 15.0 14.9 14.9 14.9 15.0 15.0 15.3
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Table 5
Convergence of frequency parameters of square FG sandwich plate with Polyethylene core thickness 10mm, 
face sheet thickness 2.5mm, for different Boundary conditions 

BC's power-law
index (k) 

porosity factor (β)
0.1 0.2 0.3 0.4

CCCC 0 6.959 7.017 7.141 7.511
0.5 7.229 7.124 7.185 7.420
1 7.094 6.796 7.262 7.129
2 6.799 7.390 6.523 7.287
5 6.826 6.584 6.878 7.227
10 7.081 6.882 7.163 6.909

CSCS 0 6.247 6.322 6.404 6.760
0.5 6.483 6.395 6.592 6.667
1 6.373 6.092 6.261 6.422
2 6.125 6.646 5.825 6.536
5 6.133 6.040 6.007 6.488
10 6.359 6.189 6.367 5.906

CCCS 0 6.013 6.204 6.358 6.487
0.5 5.988 6.066 6.172 6.270
1 5.960 6.030 6.083 6.168
2 6.049 5.998 6.027 6.049
5 5.813 5.969 5.971 5.992
10 6.016 5.942 5.931 5.927

SSSS 0 5.437 5.569 5.713 5.868
0.5 5.395 5.480 5.570 5.664
1 5.374 5.437 5.502 5.569
2 5.353 5.394 5.436 5.479
5 5.333 5.353 5.373 5.393
10 5.324 5.3351 5.345 5.356
2 4.020 4.357 3.894 4.043
5 3.841 3.945 3.818 4.151
10 4.015 3.804 3.990 4.211
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Table 5 (Continued)

BC's power-law
index (k) 

porosity factor (β)
0.1 0.2 0.3 0.4

FCFC 0 3.697 3.899 3.970 4.166
0.5 3.749 3.644 3.954 3.965
1 3.601 3.860 4.126 3.731
2 3.688 4.046 3.626 3.726
5 3.600 3.629 3.654 3.829
10 3.700 3.468 3.704 3.910

FSFS 0 2.610 2.840 2.628 2.875
0.5 2.428 3.014 2.618 2.747
1 2.526 2.664 2.696 2.729
2 2.248 2.320 2.827 2.520
5 2.640 2.730 2.740 2.535
10 3.993 2.507 2.496 2.517

CCCF 0 3.974 4.195 4.240 4.441
0.5 4.124 3.972 4.310 4.270
1 3.835 4.115 4.448 3.952
2 4.020 4.357 3.894 4.043
5 3.841 3.945 3.818 4.151
10 4.015 3.804 3.990 4.211

Graphical representations of the natural frequency relationships for simply supported 
FG sandwich plates given by Eqs. (29 and 30) are shown in Figures 7-16. Figure 7 
shows the analytical results of the fundamental natural frequency of the sandwich plate 
of Polyethylene core porous meal at the porosity percentage (β=10%), for various face 
sheet thicknesses (1, 1.5,2, and 2.5mm) and the gradient index (k=0 to 100). It can be 
easily noticed that the natural frequency gradually decreases as the power-law exponent 
increases and increases as the slenderness ratio increases. Figure 8 shows the fundamental 
natural frequency at five slenderness ratios (a/H = 5,10,20,25,50 and 100) for porous 
metal comprise from Polyathelen at porosity factor (β =0.1). From the results drawn in, it 
is concluded that when the frequencies are low (lower modes of frequency or thin plates) 
the suggested analytical solution by CPT is close to the numerical solutions, and when 
the plate thickness increases and for higher mode frequencies, the error percentage in 
CPT will be higher. Considering the influence of porous metal type, Figure 9 gives details 
of the analytical results of the natural frequency at porosity ratio (β =10 %), for various 



Pertanika J. Sci. & Technol. 29 (3): 1655 - 1682 (2021) 1675

Vibration Sandwich with Functionally Graded Porous Core

porous metals (PEEK 30% CF, PEEK 30% GF,  Foam dythem, and Polyurethane foam) 
at core height 10 mm and face thickness 2.5 mm. It is concluded that the Polyurethane 
foam has higher stiffness than foam Dythem and all Peek types, respectively, due to the 
high mechanical properties values. Figure 10 shows the analytical results of the natural 
frequency at porosity ratio (β = 10 %), for various face sheet thicknesses (1,1.5,2, and 2.5 
mm) with FGM core height 5 mm. Figure 11 plots variation of dimensionless frequencies 
of FGM rectangular plate at power-law index (k = 0.5), and porosity ratio (β = 10 %) with 
different aspect ratios ( a/b = 0.25,0.5,0.75,1 and 2).  Figure 12 shows the analytical results 
of the natural frequency at porosity ratio (β = 10 %), for various face sheet thicknesses and 
by using various core metals.  Figure 13 shows the impact of number of the layers on the 
natural frequency of FGM rectangular plate at power-law index (k = 0.5) and porosity ratio 
(β = 10 %) for different aspect ratio (a/b = 0.25,0.5,0.75,1 and 2). It may also be viewed 
that frequency parameters are increasing with an increase in aspect ratios. The reason may 
be the rectangular sandwich plate is becoming stiffer gradually with an increase in aspect 
ratios. Figure 14 presents influences of the number of the layers on the natural frequency 
at different thickness ratios (a/H = 20,25,50 and 100) of the square FGM sandwich plate 
at gradient index (k = 2) and porosity ratio (β =10 %). From Figure 14, it is found that the 
natural frequency of plates increases with increasing the aspect ratios, and the effect of the 
number of layers must lower on frequency curve behavior. Figures 15 and 16 represent a 
3D surface plot for variation of dimensionless natural frequencies of simply supported FG 
sandwich plate at different porous parameters, and various values of face sheet thickness, 
respectively. Accordingly, in Figure 17, the first six deflections of 3-D mode shapes are 
generated for simply supported FGM square sandwich plate at porosity ratio (β = 0.0 %), 
gradient index (k =0.5), and slenderness ratio (a/h =50). In a similar fashion, it is also 
possible to display further 3D mode shapes supported by different edge conditions.

Figure 7. Results of the fundamental natural 
frequency at Beta =0.2, core height 12mm for 
various gradient index values.

Figure 8. Results of the frequency at Beta =0.1, for 
various slenderness ratios (a/h)
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Figure 9. Results of the natural frequency at Beta 
=0.1, for various porous metals at FG core height 10 
mm, and face thickness 2.5 mm

Figure 10. Results of the natural frequency at Beta 
=0.1, for various face sheet thicknesses with FGM 
core height 5 mm

Figure 11. Frequency parameter of a rectangular 
plate with a different aspect ratio (a/b) at Beta = 0.1, 
FG core 12 mm, and skin thickness 2 mm 

Figure 12. Results of the natural  frequency at 
Beta=0.1, for various face sheet thicknesses

Figure 13. The natural frequency for different 
number of layers of FGM rectangular plate gradient 
index k = 2 and Beta=0.1

Figure 14. The natural frequency for different 
number of layers of FGM square plate with gradient 
index k = 2 and Beta=0.1
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Figure 15. 3D Surface of the frequency parameter 
of the square sandwich plate at Beta= 0

Figure 16. 3D Surface of the frequency parameter 
of the square sandwich plate at Beta= 0.1

Figure 17. The first six mode shapes of simply supported FGM square sandwich plate at Beta=0.0, k =0.5

CONCLUSION

In this paper, free vibration of functionally graded porous sandwich plate if the material 
properties vary depending on the thickness with a power distribution are examined. A simple 
and new accurate mathematical model using CPT principles was presented. The sandwich 
plate comprises one phase porous metal (Polyethylene, Peek, & Foam) core gluing with 
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homogeneous skins onto two sides using suitable adhesion. The analytical formulation for 
free vibration analysis of simply supported plates is provided to predict the free vibration 
characteristics. A numerical investigation is carried out using ANSYS 2020 R2 to confirm 
the results of analytical modeling. Results for specific aspect ratio values, FG core material 
and thickness, face sheet thickness, porous factor, and type of boundary conditions are 
presented. The paper also explores the impact of various parameters on the free vibration 
characteristics of the functionally graded sandwich plates such as porous factor, gradient 
index, as well as aspect ratio. From the above, it can be noticed that:

•	 It can be observed that the natural frequencies increase with the increased porous 
factor and decrease with an increase in the volume fraction index k because of a 
reduction in the volumetric percentage of the core material. 

•	 Lower porosity parameter (Beta) indicates higher structural stiffness, consequently, 
higher dimensionless natural frequency.

•	 It can be distinctly shown from the figures and tables, that both of the aspect ratios 
(a/b) and slenderness ratios (a/h), as well as different material distributions, play 
vital roles to check the free vibration characteristics of FG sandwich structure. 

•	 The assessment of the impact of porous metal type and porosity distribution 
characteristics on the performance of the FGM structure confirmed that the 
Polyathelen foam is the correct choice than other types used in this study. 

•	 Though simplifications are considered in the analytical model, the obtained results 
show good agreement with FE simulations; the error percentage did not exceed 
6%. This percentage increase as the thickness ratio increases in both thickness ratio 
and gradient index; for example, the error will be diminished with increasing of 
the thickness ratio (a/H=100) at k =100.

•	 The plate frequency parameter increases with the constraint to the boundary 
conditions; for example, the frequency parameter for CCCC is higher than CCCS. 
This condition is more than CSCS, and so on, as shown in Table 5. Also from Table 
5, it can be concluded that frequencies are increasing with an increase in porosity 
ratio regardless of the edge conditions and FG parameters considered.

•	 For the FG core consists of multilayers, it is found that the distribution of natural 
frequency across the thickness indicates a smooth variation of the same compared 
to those obtained in the case of the conventional laminated plates.
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