
Pertanika J. Sci. & Technol. 29 (3): 1733 - 1749 (2021)

ISSN: 0128-7680
e-ISSN: 2231-8526

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

Article history:
Received: 07 December 2020
Accepted: 01 April 2021
Published: 19 July 2021

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.29.3.07

E-mail addresses:
nagadivya.guduru@gmail.com (Guduru Naga Divya) 
rao.sk9@gmail.com (Sanagapallea Koteswara Rao) 
* Corresponding author

Application of Cubature Information Filter for Underwater 
Target Path Estimation

Guduru Naga Divya* and Sanagapallea Koteswara Rao
Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, 
Vaddeswaram, Guntur, AP, India

ABSTRACT

Bearings-only tracking plays a pivotal role in passive underwater surveillance. Using noisy 
sonar bearing measurements, the target motion parameters (TMP) are extensively estimated 
using the extended Kalman filter (EKF) because of its simplicity and low computational 
load. The EKF utilizes the first order approximation of the nonlinear system in estimation 
of the TMP that degrades the accuracy of estimation due to the elimination of the higher 
order terms. In this paper, the cubature Kalman filter (CKF) that captures the system 
nonlinearity upto third order is proposed to estimate the TMP. The CKF is further extended 
using the information filter (IF) to provide decentralized data fusion, hence the filter is 
termed as cubature information filter (CIF). The results are generated using Matlab with 
Gaussian assumption of noise in measurements. Monte-Carlo simulation is done and the 
results demonstrate that the CIF accuracy is same as that of UKF and this indicates the 
usefulness of the algorithm for state estimation in underwater with the required accuracy.

Keywords: Bearings-only tracking, cubature Kalman filter, information filter, state estimation, stochastic 
signal processing 

INTRODUCTION

Surveillance is the most significant feature of maritime warfare. The observer submarine 
is in waters doing their surveillance job. The observer moves at low speeds such that it 

does not radiate much noise during tracking 
of the target. Passive target tracking is the 
calculation of target’s trajectory merely from 
measurements of signals emerging from the 
target. These signals could be machinery 
noise from a target and its detection is 
usually indicated by an increase in energy 
above the ambient at certain bearing.  Passive 
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mode helps the observer from not being tracked by the target ship. Observer equipped 
with hull mounted sonar can pick up the radiated noise of target and can generate bearing 
measurement of the target. This process is called ‘bearings-only target tracking’(BOT). 

In BOT process, only one type of measurement namely bearing measurements are 
available and there are two components of range that is in x and y directions, speed and 
course to be estimated. Hence the process becomes unobservable for most scenarios. 
So, observer has to carry out maneuver, for observability of the process and to estimate 
target motion parameters (TMP) (Koteswararao, 2018). Often observer has to carry out 
number of S-maneuvers to obtain the estimated TMP with the desired accuracy, whenever 
measurements are corrupted with high noise.

Tracking process in underwater environment contains dynamic perturbations like time 
to time change in the environment, velocity of the vehicle, self-noise of the observer and 
so on. These disturbances or noises that are internal or external to the observer affect the 
performance of hull mounted array of the sonar and other transducers generating the target 
and observer measurements. In other words, the target bearing generated is inaccurate 
and corrupted with noise. The observer contains gyro and log generate observer course 
and speed respectively. These measurements are also contaminated with noise. However, 
smoothing of these course and speed measurements is trivial and so this is not covered in 
this research manuscript.

From the available noisy information, obtaining the information of target regarding 
its velocity and range with respect to the observer is called target motion analysis (TMA) 
and in passive listening mode is most popularly called ‘Bearings-only target tracking 
(BOT)’. This is an active research since decades and researchers are trying to a) improve 
the accuracy in estimated solution using various signal processing algorithms b) generate 
less complex, easy to implement, less convergence time procedures and so on.

The classical estimator with respect to nonlinear processes is extended Kalman filter 
(EKF). However, EKF is unreliable for BOT, as in-depth knowledge regarding plant 
noise and Jacobian of measurement dynamic process are not sufficient. Recently proposed 
unscented Kalman filter (UKF) (Wan & Van Der Merwe, 2000) and cubature Kalman 
filter (CKF) (Arasaratnam & Haykin, 2009; Ding & Balaji, 2012) are Jacobian-free filters 
available to nullify the disadvantages of the EKF. 

 CKF is the recently developed nonlinear filtering algorithm based on spherical radial 
cubature rule. CKF has strong mathematical basis in the selection of cubature points and 
numerical stability than UKF. The computational load using CKF is relatively lower as it 
uses only 2*L1(L1is the dimension of the system) cubature points and UKF uses 2* L1+1 
sigma points to propagate the state and covariance. When the dimension of the nonlinear 
system is greater than 3, there is a chance that the chosen sigma points may be negative 
which render the negative covariance matrix definite whereas cubature points in CKF are 
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positive indicating the positive definiteness of the covariance matrix. Hence CKF algorithm 
is considered for this BOT application. Its extension, cubature information filter (CIF) 
(Pakki et al., 2011; Arasaratnam & Chandra, 2015; Jiang & Cai, 2018) is used such that 
it is suitable for nonlinear process and at the same time for the implementation of data 
available from multiple sensors. (In future if measurements are available from passive 
sonar, periscope, and active radar/sonar, CIF is very much useful for multi sensor data 
fusion configuration.)  	

Kalman filter processes all the sensors measurements’ centrally to obtain the solution 
thereby incurring high computational load on the digital computer. Therefore, the 
information filter is proposed, as it can be extended straight to design multi-sensor fusion 
algorithms and the computations are also simple than the conventional Kalman filter. Also 
the initialization of information filter (IF) is simple as it is independent of the system priori 
state. While determining the inverse of a high dimension augmented matrix, the digital 
computer may fail which is a big drawback of centralized fusion. The data fusion algorithms 
can be implemented efficiently in a decentralized way using IF.	 In comparison to the 
traditional centralized data fusion algorithms, the decentralized structure is more powerful 
and efficient in terms of computation and communication (Mutambara, 1998).

In information filter (IF), information state vector and information matrix play an 
important role. The inverse of the covariance matrix is named as information matrix (IM). 
The information state vector (ISV) is the product of the IM and the target state vector. 
In EKF, the target state vector and its covariance matrix are propagated in time domain 
recursive processing. In IF, the concept of EKF’s recursive propagation is applied to IM 
and ISV which is termed as extended information filter (EIF). EIF is combined with CKF 
algorithm, named as cubature information filter (CIF) is applied to BOT and the same can 
be applied in future for multi-sensor applications.  The details about CIF are given next 
section.

Mathematical modeling, design and implementation in Matlab of CIF are carried out 
as per the requirements of BOT. Initialization of state vector and its covariance matrix 
are chosen such that the algorithm works for all scenarios. Simulator is developed to feed 
various tactical scenarios. Simulator also generate the true TMP and observer position. 
Performance of the algorithm is evaluated against several scenarios in Monte-Carlo 
simulation. Acceptance criterion is chosen based on some particular weapon guidance 
and accordingly the convergence of the solution is calculated. The results for one typical 
scenario is presented.

The aim of this research work is to estimate TMP like range, course, speed and 
smoothed bearing as early as possible in sea environment. Once target path is estimated, the 
weapon can be released on to the target. The measurements are assumed to be available from 
observer’s hull mounted sonar.  The block diagram of TMP is shown in Figure 1. Further, 
TMP is used to calculate weapon pre-set parameters for releasing weapon on to a target.
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MATHEMATICAL MODELLING

Target State Equation

In BOT, the target-observer scenario is modelled mathematically based on following 
assumptions. Initially, the observer is located at (0,0) and the target is located at position 
P at some range as shown in Figure 2. 

Figure 1. Block diagram of target motion parameters

Figure 2. Target and Observer movements

The observer and target are assumed to be heading with constant course and speed. The 
target’s relative state vector (Xs ) in Cartesian coordinates w.r.t. observer at input sample 
( ) is represented as Equation 1.

				    [1]

Where , ,  ,  are the components of speed and range in x and y 
coordinates respectively at input sample number . The subsequent instant relative state 
vector based on the current instant ( ) is given by Equation 2.    



1737Pertanika J. Sci. & Technol. 29 (3): 1733 - 1749 (2021)

Application of CIF for Underwater Target Path Estimation

[4]

[			   [2]

Where  is matrix representing the system dynamics given as Equation 3. 

[4]

						      [3]

Where ‘t’ represents the interval at which samples are obtained.  is the system noise 
that is assumed to obey Gaussian distribution having mean=0 and covariance Q. The system 
noise gain matrix (Ng) is given in matrix form as Equation 4.

[4]							       [4]

The system noise covariance (Q) is given in matrix form as Equation 5.

[4]

					     [5]

Where 

[4]

 is system noise variance.

Measurement Equation

The measured bearing angle bm is given by Equation 6.

[6]

[7]

[8]

						      [6]

The measurement model equation (Z) at sample 

[6]

[7]

[8]

  is specified by Equation 7. 

[6]

[7]

[8]

					     [7]

Where H is the matrix representation of the relationship between XS and Z. The 

[6]

[7]

[8]

 is 
the noise of the measurement. Here the assumption is that the measurement noise follows 
Gaussian/uniform distribution, with variance 

[6]

[7]

[8]

.
The measurement vector 

[6]

[7]

[8] is given by Equation 8.

[6]

[7]

[8]								        [8]
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This tracking problem, the aim is to estimate the state vector 

[6]

[7]

[8]

, from a set of 
measurements 

[6]

[7]

[8]

. 

Cubature Kalman Filter Algorithm

For many practical applications, the use of EKF is not the best option, as it works well 
only in a ‘mild’ nonlinear environment and can therefore degrade efficiency. The CKF 
is the nearest known Bayesian approximation to the nonlinear system with the Gaussian 
assumption. CKF doesn’t require Jacobian evaluation making it attractive for state 
estimation. The steps in CKF are organized in two sections i.e. prediction and updation 
as given below.

Prediction

1.	 The sigma points are calculated using Equation 9.

	

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

			   [9]

	 Where 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 and 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 is the mean and covariance at input sample number 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 
and 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 is the dimension of the system. The unit sigma points 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 are defined as 
Equation 10.

	 [10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

				    [10]

	 where 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 denotes a unit vector in the direction of the coordinate axis i.
2.	 The sigma points are propagated through the dynamic model as in Equation 11.

	

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

			   [11]

3.	 The predicted mean 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 and the predicted covariance 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 
are calculated using Equations 12 and 13.

	

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

				    [12]

	

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

 

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

	                              

[10]

.

[12]

      𝑃(𝛤𝑠𝑡 + 1, 𝛤𝑠𝑡)

				    [13] 
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Updation

1.	 The sigma points are formed as Equation 14.

	 [14]

[15]

	 [14]

	 Where the unit sigma points are defined as in Equation 9.
2.	 Sigma points are propagated through the measurements model as Equation 15.     

	

[14]

[15]			   [15]

3.	 The predicted mean 

[14]

[15]

, the predicted covariance of the measurement  

[14]

[15]

, and the cross-covariance of the state and the measurement 

[14]

[15]

    are calculated using Equation 16-18. 

	 [16]

[17]

[18]

					     [16]

	

[16]

[17]

[18]

	
										          [17]

	

[16]

[17]

[18]	
										          [18]

4.	 The filter gain 

[19]

[20]

[21] 

 and the filtered state mean 

[19]

[20]

[21] 

 and covariance  

[19]

[20]

[21] 

 are calculated using Equations 19-21. 

[19]

[20]

[21] 

				    [19]
[19]

[20]

[21] 

		  [20]

[19]

[20]

[21] 		  [21]

Information Filter

The mathematical modeling of the information filter is given as follows and the detailed 
explanation for the filter is given in (Pakki et al., 2011).

The information state vector is represented by IXs , at time index 

[19]

[20]

[21] 

 is given by 
Equation 22.

				    [22]
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Where IM is given as Equation 23.

					     [23]

By substituting the covariance from EIF (Pakki et al., 2011), Equation 22 is given as 
Equation 24.

		  [24]

where  is predicted covariance matrix 
 is covariance of plant noise
 is transition matrix

The updated information state vector, , and the updated information 
matrix, , are given by Equations 25 and 26.

				    [25]

				    [26]

Where (Equations 27 and 28)

              		 [27]

	
										          [28]

Where the measurement residual, , is given by Equation 29.

							       [29]

Cubature Information Filter

The updated state vector and the updated information matrix obtained from Equations 25 
and 26 are used to update the state and covariance obtained from Equations 16-18. Hence 
the state and covariance using CIF are obtained as follows.

The updated state vector and covariance matrix can are given by Equations 30 and 31.

		  [30]

					     [31]
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The performance of the CIF is compared with the standard filter unscented Kalman 
Filter (UKF). For the detailed mathematical modeling of UKF refer (Wan & Van Der 
Merwe, 2000).

RESULTS AND DISCUSSION

In target tracking process, there appear two types of perturbations. The first type is self-
noise of the observer and the environment. The second type is the difference between the 
process understood in mathematical modelling of the target’s state and the real system 
dynamics. The source of error for the second type appears due to half knowledge about 
system nonlinearities and order of the models, plant noise variations due to environment 
and so on. For example, general assumption is that the target moves at constant velocity, 
with the disturbances in velocity considered as white noise having very small variance. It 
may not be true always in all circumstances, due to change in sea environment.  

In general, in any modern sonar system, sophisticated hardware with state of art signal 
processing is used to reduce self-noise. During normal sea state conditions, number of 
field trials will be carried out to find out self-noise and environmental noise. The same will 
be used as the input measurement covariance matrix. All raw bearing measurements are 
corrupted by additive zero-mean Gaussian noise. Here bearing measurements are considered 
with respect to Y-axis, 0o-360o and clockwise positive. The measurement interval is 1s i.e., 
at every second bearing measurement is available and the number of measurement samples 
taken for simulation is 800 samples. As the measurements are available at every second, 
the simulation time is taken as 800s.  Also Monte- Carlo simulation is carried out to give 
the confidence of the CIF algorithm. The performance of the CIF algorithm with bearing 
measurements is evaluated for several geometries. Acceptance criteria gives the acceptable 
level of errors in estimated values. Only bearing measurement gives the information about 
the target and this bearing is corrupted with noise due to underwater environment. Hence 
the errors in the estimated parameters are only reduced using the filtering algorithms but 
cannot be removed 100%. So there is necessity to know how much error can be accepted 
in the estimate. This acceptable level of errors in estimates is called acceptance criterion. 
The acceptable level of errors in the estimated parameters is 3σ for single run and 1σ for 
100 Monte-Carlo runs. Based on particular weapon guidance algorithm the acceptable 
errors are chosen in an estimated range, course and speed as less than or equal to 10% of 
true range, 5° and 1 m/s respectively for single run (3σ) and 3.33% of true range, 1.67o 
and 0.33 m/s respectively for 100 Monte-Carlo runs (1σ). 

Initialization of State Vector

The following assumptions are made to estimate the target state vector initially as follows. 
There is no knowledge about the range measurement, the velocity components are initialized 
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as 5 m/s. Based on the Sonar range of the day the initial range is taken as 5000m. Hence 
the initial target state vector 

where  

 is taken as Equation 32.	

where  

		  	 [32]

Initialization of Covariance Matrix

Assuming the initial state vector follows uniform density function, the initial covariance 
matrix P(0,0)  which is a diagonal matrix. These elements are given by Equation 33.

where  				    [33]

Performance Evaluation of the Algorithm

The measurement is assumed to be available at each second. The turning rate of  the 
observer in underwater is 0.5deg/s. The target is moving at constant velocity. The simulation 
study is done using Matlab on a personal computer. For making the process observable 
and thereafter to obtain TMA (i.e., range, course and speed of the target), in general, 
the observer carries out S-maneuver preferably on the line of sight in azimuth plane. 
Change in vehicle’s course or speed or both is called maneuver. Here course maneuver is 
implemented as speed maneuver is not recommended due to tactics limitations. In general, 
one maneuver by observer attains observability of the process and is sufficient to generate 
solution with required accuracy, in normal sea state conditions. The algorithm is evaluated 
against numbers of scenarios. The scenarios chosen for the algorithm evaluation are 
tabulated Table 1. In Table 1, the scenarios are chosen in such a way to suit the real time 
environment. The initial range is chosen based on the Sonar range of the day. The detectable 
range of passive sonar vary from few meters to 10km depending on many parameters 
like ambient (background) noise and self-noise which is termed as Sonar range of the 
day. Also the homing range of the sophisticated torpedo is 3000m. So, keeping in mind 
these points the initial range of the target is moderately assumed to be around 4500m. The 
observer velocity is chosen so that there is less self-noise. Generally, a submarine is used 
for surveillance in underwater. The submarine can go at a maximum speed of 20knots (18 
m/s). However, this will increase the self-noise very much. Tracking the target in passive 
mode is considered so that the observer is safe from being tracked by the target. There is 
necessity that the observer should move at lower speeds to reduce the self-noise. So the 
observer speed is initialized as 5 m/s. This also helps to get the observability of the target. 
The target course is taken such that the target is heading towards the bow of the observer. 
Initial bearing is taken such that the target is always heading towards bow of the observer 
and also for simplicity purpose all the initial bearing angles are taken such that they fall in 
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first quadrant. The standard deviation (S.D) of noise in the bearing measurement is taken 
as 0.17o i.e. the maximum error in the measurement is 0.5o.

Table 1
Scenarios chosen for evaluation

S. no. Target range 
(m)

Observer 
speed (m/s)

Target speed 
(m/s)

Target course 
(deg)

Target bearing 
(deg)

S.D of noise in 
bearing (deg)

1 4500 9 11 165 20 0.17
2 5000 7 10 160 20 0.17
3 5000 7 10 170 20 0.17
4 4000 8 12 135 30 0.17
5 4500 9 11 160 40 0.17
6 5000 7 10 145 20 0.17

Note. S.D- standard deviation 

For detailed discussion, let us consider scenario 5 in Table 1. A target ship is moving 
at 11m/s at a course of 160o, making an initial bearing angle of 40o with the observer. The 
initial range between the target and observer is 4500m. The observer moves at a speed of 
9m/s. The bearing measurements are corrupted with white Gaussian noise whose standard 
deviations (S.D) are 0.17o. As per the acceptance criteria, the convergence times for single 
run and Monte-Carlo simulation using CIF and UKF for the scenarios of Table 1 are 
tabulated in Tables 2 and 3, respectively.  

As per the acceptance criteria considered for single run, estimated range is said to be 
converged when the error in the range estimate is less than or equal to 10% of true range 
and never diverges thereafter in the period of simulation and the same procedure is followed 
for course and speed. So in the period of 800s simulation time using CIF, the range estimate 
error is less than or equal to 10% of true range at 247s first time and converged thereafter 
without any divergence. Similarly, the course estimate error is less than or equal to 5o at 327s 
first time and converged thereafter without any divergence and speed estimate error is less 
than or equal to 1 m/s at 304s first time and converged thereafter without any divergence. 
It means that the total solution is said to be converged at 327 seconds. Similarly using 
UKF, the range estimate error is less than or equal to 10% of true range at 196s first time 
and converged thereafter without any divergence. Similarly, the course estimate error is 
less than or equal to 5o at 328s first time and converged thereafter without any divergence 
and speed estimate error is less than or equal to 1 m/s at 307s first time and converged 
thereafter without any divergence. It means that the total solution is said to be converged 
at 328 seconds.

As per the acceptance criteria considered for single run, the estimated range is said to 
be converged when the error in the range estimate is less than or equal to 3.33% of true 
range and never diverges thereafter in the period of simulation and the same procedure 
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is followed for course and speed. So in the period of 800s simulation time using CIF, the 
range estimate error is less than or equal to 3.33% of true range at 267s first time and 
converged thereafter without any divergence. Similarly, the course estimate error is less 
than or equal to 1.67o at 351s first time and converged thereafter without any divergence 
and speed estimate error is less than or equal to 0.33 m/s at 344s first time and converged 
thereafter without any divergence. It means that the total solution is said to be converged at 
351 seconds. Similarly, using UKF, the range estimate error is less than or equal to 3.33% 
of true range at 261s first time and converged thereafter without any divergence. Similarly, 
the course estimate error is less than or equal to 1.67o at 369s first time and converged 
thereafter without any divergence and speed estimate error is less than or equal to 0.33 
m/s at 363s first time and converged thereafter without any divergence. It means that the 
total solution is said to be converged at 369 seconds.

Scenarios 1,4 and 5 converged faster using CIF (consider total convergence times 
from Monte-Carlo simulation) at 333, 375 and 351 seconds respectively whereas using 
UKF the same scenarios converged at 354, 439 and 369 seconds respectively. Similarly, 

Table 2
Convergence time in seconds of the chosen scenarios for single run

S.no Convergence time in seconds for single run
CIF UKF

R S C CT R S C CT
1 326 308 262 326 341 266 264 341
2 302 351 352 352 217 227 226 227
3 340 361 355 361 278 235 159 278
4 198 149 216 216 198 149 216 216
5 247 304 327 327 196 307 328 328
6 236 353 370 370 191 176 226 226

Note. R, Range; S, Speed; C, Course; CT, Convergence Time

Table 3
Convergence time in seconds of the chosen scenarios for 100 runs

S.no Convergence time in seconds for 100 runs
CIF UKF

R S C CT R S C CT
1 333 331 327 333 354 314 334 354
2 324 375 372 375 256 315 278 315
3 358 384 375 384 294 311 200 311
4 306 349 374 374 407 431 439 439
5 267 344 351 351 261 363 369 369
6 352 400 404 404 225 213 284 284

Note. R, Range; S, Speed; C, Course; CT, Convergence Time
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scenarios 2,3 and 6 converged faster using UKF (consider total convergence times from 
Monte-Carlo simulation) at 315, 311 and 284 seconds respectively whereas using CIF 
the same scenarios converged at 375,384 and 404 seconds respectively. For scenarios 1,4 
and 5, CIF is better while UKF is better 2,3 and 6 scenarios. From Tables 2 and 3, it is 
emphasized that the CIF and UKF are giving total convergence time for all the scenarios 
comparably. The true and estimated paths of target and observer using CIF and UKF are 
shown in Figure 3 and 4, respectively. The estimated path of the target in Figure 3 is so 

Figure 3. Observer and target movements using CIF

Figure 4. Observer and target movements using UKF
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smooth indicating CIF stability. The estimated path using UKF is zigzag indicating the 
filter instability when compared to CIF.

The errors in estimated range, speed and course using CIF and UKF are shown in 
Figures 5a to 5c, respectively. Similarly, the RMS errors in estimated range, speed and 
course using CIF and UKF are shown in Figure 6a to 6c, respectively.

Figure 5. Error for Scenario 5: (a)Range estimate; (b) Speed estimate; and (c) Course estimate

(a)

(b)

(c)
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From the Figure 6a, it is understood that the RMS error in range estimate using the 
CIF (blue dashed line) is very much less which indicates the convergence nature of CIF. 
Also the curve is very smooth which indicates the CIF filter stability. The RMS error in 
range estimate of target using the CIF and UKF almost converged at the same time i.e., 
267s and 261s (Table 3), respectively. These all indicate the usefulness of the algorithm for 

(a)

(b)

(c)

Figure 6. RMS error for Scenario 5: (a) Range estimate; (b) Speed estimate; and (c) Course estimate
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state estimation in underwater with the required accuracy. The same can be observed from 
Figure 6b (Speed estimate RMS error for Scenario 5) and Figure 6c (Course estimate RMS 
error for Scenario 5) for RMS error in speed and course estimates. As the computations 
are straightforward in CIF, the RMS error value is found to be less when compared to 
UKF enabling the CIF to withstand more unstable and higher order system nonlinearity 
and measurement noises. From the literature till date, UKF is found to be giving solution 
accurately for systems with Taylor’s series of third order. From the analysis done in this 
research, CIF is found to be giving solution similar to UKF.  

CONCLUSION

Target tracking is proposed in underwater using CIF, a less complex and easy to implement 
algorithm. One of the best advantages of CIF over other filters is the decentralized data 
fusion ability as the corrected ISV and IM can be obtained by simply adding the associated 
values to the updated ISV and IMs. Simulator is developed to feed various scenarios 
and evaluate the algorithm.  Performance evaluation of CIF algorithm is carried out in 
simulation mode and the results are presented for typical scenarios. The convergence times 
using UKF and CIF are almost near for all the scenarios except for difference of 120s in 
scenario 6. CIF is found to be appealing simulation results for BOT using single sensor in 
comparison with UKF with the help of straightforward computations. Keeping in view, 
the smaller number of computations and decentralized data fusion ability of CIF, CIF is 
very much useful for state estimation in underwater.
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