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ABSTRACT

Retinal image analysis is crucially important to detect the different kinds of life-threatening 
cardiovascular and ophthalmic diseases as human retinal microvasculature exhibits 
remarkable abnormalities responding to these disorders. The high dimensionality and 
random accumulation of retinal images enlarge the data size, that creating complexity in 
managing and understating the retinal image data. Deep Learning (DL) has been introduced 
to deal with this big data challenge by developing intelligent tools. Convolutional Neural 
Network (CNN), a DL approach, has been designed to extract hierarchical image features 
with more abstraction. To assist the ophthalmologist in eye screening and ophthalmic disease 
diagnosis, CNN is being explored to create automatic systems for microvascular pattern 
analysis, feature extraction, and quantification of retinal images. Extraction of the true vessel 
of retinal microvasculature is significant for further analysis, such as vessel diameter and 
bifurcation angle quantification. This study proposes a retinal image feature, true vessel 

segments extraction approach exploiting 
the Faster RCNN. The fundamental Image 
Processing principles have been employed 
for pre-processing the retinal image data. A 
combined database assembling image data 
from different publicly available databases 
have been used to train, test, and evaluate 
this proposed method. This proposed 
method has obtained 92.81% sensitivity and 
63.34 positive predictive value in extracting 
true vessel segments from the top first tier 
of colour retinal images. It is expected to 
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integrate this method into ophthalmic diagnostic tools with further evaluation and validation 
by analysing the performance.

Keywords: Cardiovascular disease, convolutional neural network, deep learning, feature extraction, retinal 
imaging 

INTRODUCTION

Medical imaging offers the way of visual inspections of diseases state. Retinal image 
analysis is recognised as a significant part of the medical imaging discipline as some 
of the severe cardiovascular diseases such as Diabetic Retinopathy (DR), Hypertensive 
Retinopathy (HR), and Ischemic Stroke (IS) can be detected by analysing the degradation 
of retinal microvasculature in a non-invasive manner (Abbasi-sureshjani et al., 2016; 
James, 2000; Witt et al., 2006). Researches revealed that some distinct funduscopic 
disorders such as arteriovenous (AV) nicking, exudates, Cotton Wool Spots (CWS), vessel 
widening, microaneurysm, changes in bifurcation angles, and focal arteriolar narrowing in 
the retina are found as closely associative to the above-mentioned cardiovascular diseases 
though the different vascular risk factors and blood pressure are in control (De Silva et al., 
2011; Henderson et al., 2011). Ong et al. (2013) demonstrated that the risk of stroke and 
hypertensive retinopathy are optimally assistive. However, Baker et al. (2008) and Wang 
et al. (2011) investigated that even this can be the cause of stroke fatality in people who 
are not suffering from the stroke risk factors. Therefore, deviations in the retinal artery and 
vein diameter are strongly recommended as the great cause of stroke (Kipli et al., 2018).  

Image Processing (IP) techniques are being exploited to extract the human retina’s 
qualitative and quantitative image features. However, most of the developed IP-based 
techniques are not fully automated and time-consuming, which are still considered the 
limitations of retinal image analysis. In biomedical imaging such as AI-based radiology, 
IP is excitingly contributing as the radiological diagnosis depends on different imaging 
modalities. As ophthalmology has a salient similarity with radiology, AI is being explored 
to develop new methods to assist ophthalmic practitioners in predicting fatal cardiovascular 
disease and other notable threatening events for vision loss. However, random acquisition 
of retinal image data and its high dimensionality create a heap of retinal data. This massive 
data accumulation is throwing the data management challenge to ophthalmologists. DL has 
been introduced to develop intelligent tools by integrating various task-driven AI algorithms 
to manage these tremendous-sized data in a more acceptable, safe, and efficient way.

The Artificial Neural Network (ANN) technique is employed to construct Deep Neural 
Network (DNN) exploiting multiple layers that analyse the image feature hierarchy from 
higher to lower level vice-versa (Goodfellow et al., 2016; Buduma & Locascio, 2017). 
The multi-layered DL structures process nonlinear data to analyse and classify many data 
patterns, extract and classify both supervised and unsupervised data features. The small 
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units of ANN, artificial neuron, produce real-valued activations that have been utilised to 
construct DNN forming parameterized functions such as Rectified Linear Units (ReLUs), 
sigmoid, Tangent Hyperbolic (tanh), and softmax (Abadi et al., 2016; Ghesu et al., 2016; 
Schmidt-Erfurth et al., 2018).  The integrated artificial neurons in each layer of DNN 
are needed to train for defraying information with high-level representation and more 
abstraction from the network’s first to the last layers. Convolutional Neural Network (CNN) 
is a form of feed-forward DNN consisting of convolution, pooling, and fully connected 
layers developed primarily to deal with image data. Convolutional Neural Network employs 
backpropagation to learn complex image features hierarchies and patterns automatically 
and adaptively. 

The AI applications based on CNN are being developed extensively for retinal 
image analysis, especially for disease state gradation, microvasculature segmentation, 
and feature extraction. There are two types of recently developed DL algorithms for 
ophthalmic abnormality detection such as image-based and lesion-based. The lesion-based 
algorithms are trained with previously known features such as exudates, haemorrhages, 
and microaneurysms. Image-based algorithms are also known as black-box algorithms, 
and this kind of system is trained with manually graded retinal images that generate an 
output indicating the disease state (Fenner et al., 2018). To classify the Age-related Macular 
Degeneration (AMD), Grassmann et al. (2018) developed a DL algorithm exploiting six 
different CNN models such as Visual Geometry Group (VGG), Inception-V3, AlexNet, 
ResNet V-2, ResNet, and GoogLeNet that obtained 94.30% accuracy and 84.20% sensitivity 
on Cooperative Health Research on the Region of Augsburg (KORA) data set. Niemeijer 
et al. (2007) and Abràmoff et al. (2016) developed a CNN algorithm to detect DR signs, 
exudates, haemorrhages, and neovascularisation, combining VGG and AlexNet that 
recorded 90.7% accuracy, 82.7% sensitivity, and 96.8% sensitivity, 87% specificity, 0.98 
AUC respectively. Gargeya & Leng (2017) and Pratt et al. (2016) proposed a customised 
CNN model, Gulshan et al. (2016) used Inception-V3 for DR detection, and Ting et al. 
(2017) developed a CNN model to detect referable and vision-threatening DR while 
Takahashi et al. (2017) modified GoogLeNet for DR grading. The proposed model of Ting 
et al. (2017) showed 90.5%, 100%, 96.4%, 93.2% sensitivity and 91.6%, 91.1%, 87.2%, 
88.7% specificity for referable DR, vision-threatening DR, glaucoma and AMD detection 
respectively. The performance of Gargeya & Leng (2017)  was recorded as 94% sensitive 
and 98% specific to DR detection. The work of Ting et al. (2017) seems inconsistent for 
the implementation in ophthalmic tools as their data set was not graded by the experts. 
Their work did not consider the great DR signs such as microaneurysms, haemorrhages to 
analyse and identification of macular oedema was poor, which are the strong limitations 
of the model of Ting et al. (2017). 

In retinal image analysis, segmentation is an important step as the segmented image 
is further utilised for qualitative and quantitative feature detection. Melinsca et al. (2015) 
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and Zhu et al. (2017) developed deep max-pooling CNN and Extreme Learning Machine 
(ELM) based retinal image segmentation algorithms that obtained 94.66% and 96.00% 
accuracy, respectively. The work of  Zhu et al. (2017) has been evaluated on  Retinal 
Images for Screening (RIS) and found as time effective. For semantic segmentation 
of retinal image Dense U-net, a DL approach has been introduced. Wang et al. (2019) 
proposed a Dense U-net model employing image patch-based technique for segmentation 
that obtained 0.9511 and 0.9538 accuracy, 0.7986 and 0.7914 sensitivity, and 0.9736 and 
0.9722 specificity for DRIVE and STARE databases, respectively. Wang et al. (2019) 
model used a sequential reconstruction strategy to reconstruct the segmented patches at the 
output end. An optimized deep CNNN approach had been introduced by Badawi & Fraz 
(2019) for AV classification and obtained the best accuracy, 98%, for the AVRDV dataset. 
Exploiting Recurrent Residual CNN (RRCNN) and Recurrent CNN (RCNN) Alom et al. 
(2018) developed U-Net-based semantic segmentation algorithms,  while  Oliveira et al. 
(2018)  developed a CNN model for data augmentation and prediction. Both algorithms 
of Badawi & Fraz (2019) and Oliveira et al. (2018) obtained the best result for the STARE 
database. However, the sensitivity of Oliveira et al. (2018) has slightly deviated while 
performing cross-training on STARE and DRIVE datasets. In the vessel segmentation 
model of Wang et al. (2015), CNN and Random Forest (RF) have been ensembled where 
CNN was dedicated to detecting hierarchical features, and RF contributed as a classifier. 
Wang et al. (2015) evaluated the DRIVE and STARE database and obtained 0.9767 and 
0.9813 accuracy, 0.8173 and 0.8104 sensitivity, and 0.9733 and 0.9791 specificities for both 
databases, respectively. Maji et al. (2015) combined Denoising Auto-Encoder (DAE) and 
RF to develop a hybrid DL model for vessel detection and showed 93.27% accuracy. Guo et 
al. (2019), Mo and Zhang (2017) and Yan et al. (2019) proposed supervised CNN models, 
and Lahiri et al. (2016) proposed an unsupervised Deep Neural Ensemble Network. The 
work of Guo et al. (2019) and Lahiri et al. (2016) obtained 95.60% and 95.33% accuracy 
on the DRIVE database, respectively, while the work of Yan et al. (2019) showed the 
best outcome, 0.9638 accuracies, 0.7735 sensitivity, and 0.9857 specificities for STARE 
database. Though the work of Mo & Zhang (2017) showed robustness in segmentation and 
faster processing speed, the algorithm showed slightly lower accuracy for a cross-training 
on CHASE DB1 and DRIVE database, respectively. It is assumed that the wider arteriolar 
orientation, poor vessel contrast, and non-uniform background illumination of the CHASE 
DB1 image can cause a deviation in the accuracy.

Retinal Image feature identification is crucially important for visual analysis of the 
impairment in the microvascular structure of the human retina. In order to decide on 
cardiovascular disease or other ophthalmic abnormalities from retinal image analysis, 
diagnostic methods must have consistency in detecting the interesting features such as 
CWS, haemorrhages, exudates, vessel widening, and microaneurysm. Most of the retinal 
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image feature detection algorithms based on DL have been developed to detect retinal 
lesions. To detect haemorrhages, Van Grinsven et al. (2016) trained their 5-layered CNN 
model with both selective and non-selective retinal image samples. Van Grinsven et al. 
(2016) evaluated their Selective Sampling CNN (SeSCNN) and Non-Selective Sampling 
CNN (NSeSCNN) model’s performance on Kaggle and Messidor databases for different 
false positive values. It was recorded that the SeSCNN performed better than NSeSCNN. 

The developed Neural Network (NN) architecture combining Logistic Regression 
(LR) with Radial Basis Function (RBF) of García et al. (2009a) obtained 88.1% accuracy, 
70.4% positive predictive value, and 100% sensitivity in retinal hard exudate detection. The 
image-based exudate detection of Osareh et al. (2009) obtained 96% sensitivity, and  94.6% 
positive predictive value, and this performance is better than their lesion-based detector. 
Tan et al. (2017) evaluated their 10-layered CNN model for exudates, microaneurysms, 
and haemorrhages detection on CLEOPETRA that showed 87.58% sensitivity for exudate 
detection and 62.37% sensitivity for haemorrhages and microaneurysm detection.  The 
Fuzzy C-means and ANN-based DL model of Osareh et al. (2003) was 93% sensitive to 
exudate detection and 95% sensitive to detect lesions in retinal images. To detect both 
image-based and lesion-based hard exudates, Van Grinsven et al. (2016) investigated 
Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), RBF, and NN classifier. 

For retinal image feature detection cross-entropy function, regularisation for MLP and 
RBF had been used in the investigation of Van Grinsven et al. (2016). Among these models, 
MLP obtained better results, 97.01% accuracy, 100% sensitivity, and 92.59% positive 
predictive value, compared to SVM, RBF, and NN classifier. The training of MLP was 
more complex than RBF. It  could be happened due to the slow convergence as the effects 
of different weights and the presence of nearly flat regions in the error function of MLP. As 
the legacy of Van Grinsven et al. (2016), García et al. (2010) investigated Majority Voting 
(MV) schema (MV), SVM, RBF, and MLP for microaneurysm and haemorrhages detection. 
According to the investigation of García et al. (2010), MV and RBF can be recognised 
as successful feature detectors. However, training these two detectors is expensive, and 
between these two, RBF can be considered the best feature detector.

It is important to comprehend the suitable AI methods before implementation to obtain 
the expected results as implementing these methods is complex, and we need to train the 
methods recurrently. Supervised, unsupervised, and reinforcement learning are the available 
techniques for training the AI method. In terms of data processing proficiency, SVM is 
considered the most suitable and popular supervised learning algorithm compared to other 
existing algorithms such as ANN, K-nearest Neighbour (KNN), Naïve Bayes classifier, 
Decision Tree, Fuzzy Logic, and Random Forest. On the other hand, clustering algorithms 
and association rules are suitable for noisy and low-quality data processing that are the most 
used unsupervised learning algorithm to develop DL  models for medical data processing.
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The selection of DL methods to develop AI machines for retinal image analysis must 
be empirical regarding the retinal image data characteristics, number of parameters for 
training the algorithms, and length of the training period. For medical image analysis tools, 
ANN is suitable to implement in DL compared to the logistic regression because of the 
non-linear operation ability of ANN in high dimensional image data processing, dealing 
with noisy data, and securing higher prediction accuracy. Recurrent Neural Network (RNN) 
and CNN have been more efficient in cardiovascular disease state prediction, and abnormal 
feature detection by analysing retinal and brain MR images (Krittanawong et al., 2017). 

The development of appropriate DL-based retinal image segmentation and feature 
extraction methods is crucially important to understand the complex hierarchical 
microvasculature of the human retina that can maximise the retinal abnormalities detection 
result. The highly varied retinal image dataset due to the poor acquisition method can 
affect the performance of DL models. To avoid this complication, appropriate annotation 
of characteristics features is significant while preparing the training data. According to the 
literature study, no DL-based retinal image feature detection method has been reported 
that can segment retinal microvasculature and extract qualitative and quantitative image 
features simultaneously. The existing retinal image feature detection algorithms had been 
developed to detect retinal lesions such as hemorrhages, microaneurysms, and exudates as 
a single feature. Various CNN models such as recurrent CNN, deep CNN utilise different 
non-linear functions that obtained comparatively better feature extraction results than the 
logistic regression approach. 

The existing retinal image feature detection methods of   García et al. (2009a), García 
et al. (2010), García et al. (2009b), and Osareh et al. (2009)  obtained the best detection 
performance for image-based criterion compared to the lesion-based criterion. It can be 
happen due to the lesion’s low pixel intensity as the lesion is annotated alone from the 
whole image. Moreover, pixel-wise ground truth estimation in the lesion-based criterion 
is cumbersome that can degrade the training accuracy and consequently obtain poor 
feature detection performance. Though the CNN-based feature detection model showed 
better performance than the statistical analysis, there are some limitations of this newly 
developed technology in terms of overfitting training data and lengthy processing due to 
the utilisation of more parameters. Reducing hidden layers from the CNN architecture and 
increasing training data can potentially solve the data overfitting problem.

All the recently introduced DL models for feature detection have been investigated 
to select the suitable CNN architecture for this study. This paper proposes a DL approach 
for retinal image feature extraction employing the Faster-RCNN method. This proposed 
method has been designed to extract true vessel segments as retinal image features from the 
multiple locations of the first top tier of colour retinal images. To train, test, and evaluate 
the performance of this proposed method, colour retinal images from different publicly 
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available databases have been extracted. The development of this DL approach is aimed to 
integrate into our previous work the IP algorithm for retinal vessel diameter quantification 
of different interesting locations of retinal images for creating a fully automated vessel 
diameter quantification method (Hoque et al., 2019; Hoque et al., 2018; Kipli et al., 2020). 
The applied methodology, including training and testing for the development of this 
proposed DL method, is explained in detail in the following section. The obtained results are 
briefly described, and the evaluation and critical analysis of the performance are also added 
consecutively. Figure 1 illustrates the graphical representation of the Faster RCNN model.

Figure 1. Graphical representation of Faster RCNN model
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MATERIALS AND METHODS

The existing IP techniques, and the recently developed DL method, Faster-RCNN, were 
combined to develop this proposed method. A collection of normal, healthy, and abnormal, 
pathological, images from the different databases such as High-Resolution Fundus Image 
Database (HRFID), Digital Retinal Images for Vessel Extraction (DRIVE), Structured 
Analysis of the Retina (STARE), and MESSIDOR database were used in this research to 
train, test and validate the proposed DL model. Four hundred fifty images had been used 
for training and testing this algorithm. These 450 images were divided to form training and 
testing datasets where the training dataset contained 270 images, and the testing dataset 
contained 180 images. Both the training and testing dataset consisted of normal and 
pathological retinal images. Figure 2 describes the involved steps in this proposed method. 

At the preprocessing stage, Contrast Limited Adaptive Histogram Equalization 
(CLAHE) was employed to enhance the quality of the input image. After that, the enhanced 
image was resized following the DL algorithm’s requirement, [224 224 3], and estimated 
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the GroundTruth from that image to extract the features, true vessel, using image labeller 
apps of MATLAB.

The main vessels of the top first tier were considered Region of Interest (ROI) of all 
the images. The multiple vessel segments of that ROI were annotated as the ground truth 
by using bounding boxes. These images with annotated ground truth were augmented to 
use as training data for securing better performance. A previously developed Faster-RCNN 
had been trained in this project to detect the expected features of retinal images. Figure 3 
demonstrates the graphical representation of the proposed method.

Figure 2. Proposed method

Figure 3. Graphical representation of the proposed method
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DL Network (Region-based Convolutional Neural Network, RCNN)

Faster RCNN is the updated version of RCNN developed to detect multiple objects from 
a single image. To construct DL architecture for this research, Faster RCNN had been 
used. Faster RCNN uses a separate network, Region Proposal Network (RPN), to detect 
the region proposals from the feature maps provided by the convolutional layer. The RoI 
pooling layer reshapes the detected region proposals. It passes these to the fully connected 
layer, softmax, and linear regression layer that classifies the features and predicts the offset 
values for the bounding boxes. The Faster RCNN model is the composition of three different 
modules that are fully convolutional network, feature network, to generate feature maps 
from the input image, RPN to generate bounding boxes that contain different features or 
objects extracted from feature maps, and Detection Network that takes input from both 
RPN and feature network to detect the expected features. This entire system for feature 
detection is a single unified network.

Feature Network (Convolutional Layer)

The tasks were performed in three different stages to develop the proposed model in this 
research. First, a Fast R-CNN had been created, and further an RPN was added, and finally, 
the RPN and detection network was trained. To perform the convolutional operation, a 
Fast R-CNN, ResNet-50 (Residual Network-50), was trained to produce the feature maps 
further fed into RPN to generate the region proposals. ResNet-50 is a model of CNN that 
consists of 50 layers of different fundamental operations of CNN methodology such as 
convolution, pooling, activation, and fully connected layers. The input size of the images 
that is suitable for the network is 224×224×3. The kernel sizes for the initial convolution 
and max-pooling of the ResNet were considered as 7×7 and 3×3, respectively, with stride 2 
for both convolution and max pooling. The network architecture starts after initial steps that 
consist of three different residual blocks, and each of the blocks contains three convolution 
layers performed with 64, 64, and 256 Kernel, respectively. In order to design the deeper 
RestNet, the bottleneck architecture was used instead of using all 3×3 convolution layers 
as a standard residual block. In the bottleneck architecture of the residual block, three 
convolution layers, 1×1, 3×3, and 1×1 convolution, is stacked one over another for each 
residual function. 1×1 is used to reduce the input dimension before performing the 3×3 
convolution, and then another 1×1 convolution layer is used to preserve the original shape. 
The size of the stride, stride 2, reduces the height and width of the input to half and doubles 
the channel width for the following stages. There are 4, 6, and 3 residual blocks in stages 
2,3, and 4, respectively. The network has an average pooling layer followed by a fully 
connected layer as the final layer.
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Region-based Proposal Network (RPN)

RPN contains 3 convolution layers that take the feature map as input are generated from 
the feature network and produces region proposals with bounding boxes containing the 
potential features. In order to generate the region proposal, a sliding window of 3×3 size 
kernel was used for each location of the feature map and 9 (K=9) anchor boxes with three 
different scales of 128, 256, and 512, and 3 aspect ratios of 1:1, 1:2, and 2:1 were used for 
each location. In addition, a box-class layer, cls layer, results in 2 K scores that the anchor 
boxes contain an object or not, and a box regression layer, reg layer, results in 4K for the 
coordinates of K boxes. Figure 4 illustrates the operational block diagram of RPN.

Figure 4. Operational block diagram of RPN

Detection Network

Fast RCNN had been adopted to construct the detection network where two sibling layers get 
input from the feature network and RPN. The output proposals from the pooling layer were 
fed to the classification layer, softmax classification, and linear regression layer, bounding 
box regression layer of the detection network as a batch. The softmax classification layer 
classifies the RoI pooling layer output, RoI bounding box, by computing the probability 
distribution, p= (p0………pk) over the K+1 class throughout the fully connected layer. 
The bounding box regression layer is responsible for predicting the bounding boxes, by 
computing the regression offsets for each object class.  The regression layer generates 4 
bounding box offsets that can be explained as  where i=x,y,w,h, and 
(x,y) denotes the coordinates of the top left corner of the bounding box and w and h denote 
the width and height of the bounding box respectively.

Training DL Network

To train the proposed DL method stochastic gradient descent training algorithm had been 
used with an initial learning rate of 1 × 10–3 Twenty epoch and 400 iterations for each 
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epoch were performed to accomplish the whole training process. The mini-batch size was 
set to 3. As the Faster RCNN had been used in this research, the standard cost function was 
used to calculate the training loss. The whole training procedures for the entire network 
are briefly described in the following sections.

Training RPN

The number of anchors was reduced to train the RPN. Initially, the anchors were assigned 
by a binary class label threshold. Further, the values of Intersection over Union (IoU) of 
primary and predicted bounding boxes of anchors were considered to reduce the number 
of anchors. The IoU measures the overlap between the primary and the predicted boundary 
boxes. If the value of IoU is greater than 0.4, then the anchor is assigned as a positive label 
while the anchor is assigned as a negative label if the value of IoU is lower than 0.3. The 
rest anchors that do not satisfy this condition were not considered for the RPN training 
process. Thus, the multi-task training loss for RPN combines the losses in classification 
and regression operation calculated by Equation 1.

	 (1)

Here λ is the balancing parameter to balance the weights of Lcls and Leg roughly. Lcls 
is the classification loss which is log loss over two different classes of anchor, object, or 
not an object. The term i represents the index number of mini-batch, where pi denotes the 
output label from the classification layer for ith anchor and  denotes the ground-truth label. 
The label of both pi and  is binary, 1 or 0 where 1 indicates a boundary box is an object, 
and 0 indicates the boundary box is not an object. Lreg is the regression loss considered 
for calculation if the anchor is an object, where  is the regression target, ground-truth 
coordinate for the regression layer, and ti outputs of the learned regression layer. 

After the sampling of anchors, the region proposals with that sampled anchors were 
fed to the Region of Interest (RoI) pooling. The RoI pooling layer employs max pooling 
to extract the fixed-sized feature maps with the size of (N, 7, 7, 512) for each proposal. 
Here N, is the number of Region proposals from RPN. Figure 5 illustrates the operation 
of the RoI pooling layer.

Training Detection Network

The threshold values of IoU were set to 0.1 to 0.5 to label the ROIs as background To 
train the detection network. The RoI was labelled as foreground when the IoU is above 
0.5. Bounding box targets, ground truth boxes were also generated following the same 
approach of RPN. The multitask loss L was calculated for each labelled RoI to estimate 
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the loss during training the detection network. The loss in the classification layer had been 
calculated by a cross-entropy or log loss, while the smooth L1 loss had calculated regression 
loss for bounding box regression. The multitask loss L was calculated by Equation 2,

			   (2)

Here Lcls(p,u) is log loss and Lcls= -logpu where u is the true feature class in the 
bounding box. Lloc(tu,v) is the loss of the regression layer, which is calculated by smooth L1 
loss. The balancing parameter is denoted by λ, u represents the class, and v represents the 
bounding box regression targets for class u. The term [u≥1] determines the true bounding 
box regression targets. When u=0, the regression loss is considered 0 because there were 
no ground-truth boxes for the background. The bounding box regression loss, Lloc(tu,v), 
was computed by Equation 3,

			   (3)

Where smooth L1 was determined by Equation 4, 

				    (4)

Smooth loss L1 was used because it is less sensitive to outliers, and λ=1 was set to 
balance the two losses. Finally, the ground truth regression target vi was normalised for 
the mean as zero and unit variance. 

The 4 Step alternating training method (Ren et al., 2017) was further employed to the 
RPN and Detection Network simultaneously to share the weights of convolution layers of 
the two networks between themselves.  In the first step of this training method, the RPN 

Figure 5. Operation of RoI pooling layer
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was trained as described in the section, Training RPN. Then, an ImageNet pre-trained 
model was used to initialise the RPN and fine-tuned end-to-end for the region proposal 
task in step 1. Next, the proposals generated in step 1 were used by Fast RCNN to train 
the detection network in step 2, which the ImageNet pre-trained model also initialised. 
Although, as in these training steps, the two networks do not share convolution layers, 
the detection network was used to initialise to train RPN in the third step. In this step, the 
shared convolution layers were fixed and fine-tuned the unique layers to RPN. In the final 
step, step 4, the unique convolution layers of Fast RCNN were also fine-tuned following 
the fixed shared convolutional layers. In this way, a unified network, Faster RCNN, was 
formed where both networks share the same convolution layers.

RESULT

The training performance was measured for each iteration of each epoch of the training 
stage. The training loss and the Root Mean Squared Error (RMSE) after the final epoch 
were recorded as 0.3446 and 0.17. It was observed that the training performance of the 
proposed network had increased over time and reached 99.4% training accuracy after 7 
training epochs.  After the completion of training, the proposed method had been tested 
on two different datasets, healthy and unhealthy datasets. The healthy dataset had been 
created extracting images from DRIVE, and the images for the unhealthy dataset were 
taken from Kaggle. These two unknown datasets consisted of 700 images. The proposed 
method was able to detect the true vessel from both healthy and unhealthy images. Figure 
6 demonstrates the images, healthy and unhealthy, with the true detected vessel. The testing 
performance of the proposed method for these two unknown datasets was also recorded. 
Table 1 represents the testing performance of the proposed method for the unknown dataset.

Figure 6. Test images: (a) healthy and (b) unhealthy with the true detected vessel

(a) (b)
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In Table 1, columns 1,2 and 3 represent the datasets, Se, and PPV of the proposed 
method. The network successfully detected the true vessel from the interesting location 
of those images. Figure 7 shows the retinal images with the true detected vessel from 
multiple locations. 

Table 1 
Testing performance of the proposed method for the unknown dataset

Dataset Se (Mean value, %) PPV (Mean value, %)
Healthy Dataset 90.53 61.22
Unhealthy Dataset 88.16 60.67

Figure 7. Retinal Images with the true detected vessel from multiple locations

Sensitivity (Se) and Positive Predictive Value(PPV) had been calculated to evaluate 
the performance of the proposed DL method. In addition, the testing dataset that was pre-
processed for use in this research had been used for testing and calculating the performance 
measurement matrices. Table 2 illustrate the performance comparison between the recently 
developed methods and the proposed method. 

In Table 2, columns 1,2,3 and 4 representing the author’s information, applied method, 
features extracted, and result, respectively. According to column 3 of Table 2, it is seen 
that most of the methods were developed to detect different features such as haemorrhages, 
exudates, microaneurysms, and the proposed method focused on true vessel detection. 
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Though all methods are dedicated to detecting different features, their performance is 
tabulated here as the retinal image feature detector. 

DISCUSSION AND CONCLUSION

Faster RCNN is primarily introduced for multiple object detection from a single image. 
In this proposed method, this Faster RCNN has been used as a feature detector dedicated 
to extracting true vessels from interesting locations of retinal images. As this study is the 
pre-step of developing an automated retinal vessel diameter quantification algorithm, the 
ROIs for true vessels from different locations are considered during ground truth estimation 
following the recommendation of local clinical experts and the manually marked ROIs 

Table 2 
Comparison of proposed method performance and existing methods

Author Method Applied Extracted Feature
Result (Mean Value %)

Se PPV
(Tan et al., 2017) CNN (10 Layered) Exudates 87.58

Haemorrhages Microaneurysm 62.57
(García et al., 
2010) 

Logistic Regression
(MLP, RBF, SVM and 
combining these three 
NNs using an MV 
schema)

Haemorrhages, Microaneurysm
Image-based 100 56
Lesion-based 86.01 51.99
Retinal Exudates (Image-Based) 96.00 94.60

(García, Sánchez, 
Poza, et al., 2009) 

Logistic Regression 
RBFNN

Retinal Hard Exudates (Lesion-
Based)

92.10 86.40

Retinal Hard Exudates (Image-
Based)

100 70.4

(García, Sánchez, 
López, et al., 2009)

Logistic Regression
MLP, RBFNN, SVM 

Retinal Hard Exudates (Lesion-
Based)
MLP 88.14 80.72
RBF 88.49 77.41
SVM 87.61 83.51
Retinal Hard Exudates (Image-
Based)
MLP 100 92.59
RBF 100 81.48
SVM 100 77.78

(Van Grinsven et 
al., 2016)

SeSCNN
NSeSCNN

Haemorrhages, SeSCNN (FP*1) 78.60
Haemorrhages, SeSCNN(FP0.1) 51.10
Haemorrhages NSeSCNN(FP1) 75.30
Haemorrhages, NSeSCNN 
(FP0.1)

31.60

Proposed Method Faster RCNN True vessel 92.81 63.34
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of (Al-Diri et al., 2008). It is seen from the performance analysis table, Table 2 that the 
proposed method obtained 92.81% sensitivity and 62.34% PPV. Furthermore, the proposed 
method showed better performance as a feature extractor compared to the lesion-based 
feature extractor of García et al. (2010) and García et al. (2009b), and the exudates detector 
of Van Grinsven et al. (2016). 

Though the proposed method’s performance is slightly lower than some of the 
mentioned feature extractors in Table 2, the result is still comparable and considered for 
further development. In Figure 5, the unhealthy images contain the diabetic lesion, so 
the microvascular structure cannot be extracted more precisely. The performance of the 
proposed method with the unknown datasets was also satisfactory. The proposed method 
obtained 90.53% and 88.16% Se, and 61.22% and 60.67% PPV for both healthy and 
unhealthy datasets (Table 1), respectively. It is seen that the performance of the proposed 
method for anonymous healthy and unhealthy data is slightly lower than the data that 
were pre-processed initially for training and testing the proposed method. For the healthy 
dataset, this deviation was happened due to the algorithm’s execution with the anonymous 
data that were not pre-processed initially. The cause of the deviation in the performance of 
a proposed method for an unhealthy dataset is due to retinopathies and lesions.  

Attaining maximum results is challenging due to the highly complex and hierarchical 
structure of retinal images. The proposed method had been trained with a comparatively 
small dataset that consists of 270 images containing healthy and pathological signs. As 
it is suggested to train the DL method with a large dataset, data augmentation had been 
performed to secure the best training performance. The obtained testing performance of the 
proposed method showed consistency as the testing dataset contained both normal retinal 
images and images with abnormality. Data pre-processing is considered one of the most 
crucial parts of DL algorithm development. Therefore, it is highly expected to use primary 
data and perform a better operation for data pre-processing such as enhance data quality 
by histogram equalisation and efficient ground truth estimation for training, testing, and 
validating the proposed method.

To increase the robustness of the proposed method, utilising a large dataset is highly 
recommended, and training options should be empirical. It is recommended to configure 
the training option by setting with more epochs, high Verbose-Frequency to secure the 
maximum result. Due to the inefficient retinal image acquisition, annotating the background 
and foreground appears to be a major challenge, and the parameter values of positive and 
negative overlapping need to be focused on for more accurate feature detection. In order 
to secure the best detection result, different ranges for positive and negative overlapping 
have been explored in this study. It was investigated that the range [0 0.3] for negative 
overlapping and [0.4 1] for positive overlapping is the best suit for training the proposed 
algorithm. As the retinal vessel detection is considered a small object and the difference 
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between the background and true vessel pixel values is less, the positive overlap range 
needs to be larger to distinguish the expected objects during training the system. Though 
the obtained result is satisfactory, this study has some limitations, such as lack of primary 
retinal image data and highly configured hardware with efficient graphics computing units 
that are crucially important for higher detection accuracy and speed up the training process. 
To further development this proposed method, it is recommended to use a large dataset of 
real images containing healthy retinal images and retinal images with the abnormality. It 
is expected to integrate this proposed method in clinical tools with further development, 
evaluation, and validation.
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