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ABSTRACT
The Weibull distribution is one of the most popular statistical models extensively applied 
to lifetime data analysis such as survival data, reliability data, wind speed, and recently 
in financial data, due to itsts flexibility to adaptably imitate different families of statistical 
distributions. This study proposed a modified version of the two-parameter Weibull 
distribution by incorporating additional parameters in the internal rate of return and insurance 
claims data. The objective is to examine the behaviour of investment return on the assumption 
of the proposed model. The proposed and the existing Weibull distribution parameters 
have been estimated via a simulated annealing algorithm. Experimental simulations have 
been conducted mimicking the internal rate of return (IRR) data for both short time (small 
sample) and long-term investment periods (large samples). The performance of the proposed 
model has been compared with the existing two-parameter Weibull distribution model in 
terms of their R-square (R2), mean absolute error (MAE), root mean squared error (RMSE), 
Akaike’s information criterion (AIC), and the Kolmogorov-Smirnov test (KS). The numerical 
simulation revealed that the proposed model outperformed the existing two-parameter Weibull 
distribution model in terms of accuracy, robustness, and sensitivity. Therefore, it can be 
concluded that the proposed model is entirely suitable for the long-term investment period.  
The study will be extended using the internal rate of return real data set. Furthermore, a 
comparison of the various Weibull distribution parameter estimators such as metaheuristics 
or evolutionary algorithms based on the proposed model will be carried out. 

Keywords: Extended Weibull distribution, investment 
growth rate, maximum likelihood, simulated annealing 

INTRODUCTION

Many physical systems have been observed 
to generate data that follow the statistical 
distributions, such as Weibull distribution 
(Datsiou & Overend, 2018). Real-world 
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phenomena are often defined using statistical distributions. Since statistical distributions are 
useful, their principles are extensively studied, and new distributions are created. However, 
there is still much interest in creating more flexible statistical distribution models to address 
different types of real-life data (Liao et al., 2020). Recently, researchers in statistical 
modelling have proposed different model approaches for generating new distributions 
data analysis. The purpose was to improve the ability to match complex phenomena in 
the data with high skewness and kurtosis. These extensions allow for greater flexibility 
when modelling specific data applications. Some studies are conducted on the generalised 
distribution classes in describing various phenomena (Elmahdy & Aboutahoun, 2013; 
Alzaatreh et al., 2013; Chauhan & Malik, 2017; Hashmi et al., 2019). It is simple and 
flexible in handling problems involving computing the modified or extended statistical 
distributions due to the computational and analytical resources provided in various 
programming software such as Python, Matlab, R, and Mathematica. A thorough review 
of methods for generating distributions was conducted by Lee et al. (2013). 

Various researchers have developed new families of distributions for different 
reasons by incorporating one or more parameters into existing distributions. Adding 
extra parameter(s) to the current probability distribution has been shown to increase 
the distribution’s versatility and goodness of fit. Several studies were carried out by 
scholars on the modification or extension of the existing Weibull model. This extension 
and modifications are well documented in the extant literature. A study by Phani (1987) 
has often been considered as one of the pioneering studies. The effort of his study was to 
find a match between two groups of fused silica optical fibres in terms of tensile strength.  
Following the work of Phani was the study by Marshall and Olkin (1997), who extended 
the Weibull distribution model by introducing additional parameters to the existing standard 
Weibull distributions. 

Finally, Hirose (2002) proposed another extended Weibull distribution. The aim was to 
avoid the difficulties which appear in the conventional Weibull distribution models. Another 
study by Sarhan and Zaindin (2009) was proposed on the new version distribution named 
modified Weibull distribution. The study was a generalisation of exponential, Rayleigh, 
linear failure rate, and Weibull. A five-parameter distribution model named a beta modified 
Weibull distribution was studied by Bidrama et al. (2013). Wang and Elbatal (2015) 
proposed a new class of lifetime distributions by compounding the modified Weibull, and 
geometric distributions called the modified Weibull geometric distribution. Another three-
parameter Weibull moment exponential (WME) distribution was proposed by (Hashmi et 
al., 2019). The proposed distribution is flexible because of various shapes of hazard rate 
functions. Finally, Guerra et al. (2020) proposed two new general families of statistical 
distributions model based on the unit interval system. A lifetime distributions model, called 
Marshall-Olkin extended inverse Weibull (MOEIW) distribution was proposed by Okasha 
and Basheer (2020). The reliability analysis of the new model is examined by employing 
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various functions, including a compound of survival function, reversed hazard rate function, 
mean inactivity time and strong mean inactivity time. Recently, another suitable distribution 
for modelling the carbon fibres data was proposed by Almetwally (2021). The proposed 
distribution combined the inverse Rayleigh distribution and the extended odd Weibull 
family to formulate the extended odd Weibull inverse Rayleigh (EOWIR) distribution with 
three parameters. Abubakari et al. (2021) proposed a distribution-based model based on five 
parameters named the modified beta flexible Weibull extension distribution (MBFWED). 
The extended version of the Weibull distribution is increasingly becoming an effective 
tool for modelling lifetime data. The modification is useful in lifetime analysis (reliability 
analysis), insurance, economy, finance, and engineering (Almazah et al., 2021).

However, there are a plethora of studies on the application of applications and uses 
of metaheuristics algorithm (MA) and artificial intelligence (AI) based techniques. These 
studies include a simulated algorithm (Abbasi et al. 2006), genetic algorithm (Alzaeemi 
& Sathasivam 2020) and election algorithm (EA) (Sathasivam et al., 2020; Abubakar et 
al., 2020a; Abubakar Danrimi, 2021) and artificial dragonfly algorithm (Abubakar et al., 
2020b). One of the purposes of incorporating MA was to maximise the fitness function 
for optimal representation. Studies on metaheuristics algorithms in parameters estimation 
include the earlier work (Thomas, 1995). Genetics algorithms (GAS) was used to determine 
the parameters of Weibull distribution. Abbasi et al. (2006) proposed estimation of Weibull 
distribution parameters using simulated annealing for failure distribution modelling in 
reliability studies. Okafor et al. (2018) proposed metaheuristics named Particle Swarm 
Optimisation Algorithm (PSOA) in estimating the Weibull distribution parameters for 
failure distributive analysis. Freitas de Andrade et al. (2019) proposed the use of heuristic 
optimisation search algorithms such as Cuckoo Search Optimisation (CSO), Harmony 
Search (HS), Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) 
in estimating the parameters of Weibull distribution. Recently, a new metaheuristics 
optimisation algorithm method, Social Spider Optimisation (SSO), was used in (Alrashidi 
et al., 2020) to estimate Weibull distribution parameters. Artificial bee colony (ABC) was 
by Yonar and Pehlivan (2020) based on the ML estimation of the 3-p Weibull distribution.  
Guedes et al. (2020) compared the performance of four metaheuristic optimisation 
algorithms; Migrating Birds Optimisation (MBO), Cuckoo Search (CS), Harmony Search 
(HS) and Imperialist Competitive Algorithm (ICA). Furthermore, a genetic algorithm (GA) 
with particle swarm optimisation (PSO) was recently used by Kaba and Suzer (2021) in 
searching for the root-mean-square error using the cumulative distribution function, and 
many more are increasingly becoming effective tools for optimisation and parameter 
estimation problem.

With the aim of extending the existing Weibull distribution model, this study proposes 
another modified version of the model by incorporating the growth rate parameter on the 
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original two-parameter. To the best of the author’s knowledge, no study has been conducted 
on modifying the two-parameter Weibull distribution by imposing a growth rate on the 
original version. In our work, Simulated annealing (SA) based on Abbasi et al. (2006) 
will be utilised in estimating the parameters of the modified Weibull distribution based on 
simulated data set mimicking the internal rate return (IRR). However, simulated data based 
on internal rate return (IRR) has never been analysed based on the new version Weibull 
distribution (WD) assumption. Therefore, this study is brand-new, focusing on the stock 
investment modelling on the assumption of the modified Weibull distribution model. The 
present work aims to evaluate the potentiality of investment return distributed based on 
the proposed Weibull distribution model. The contributions of the present work include 
(i) modification of the existing Weibull distribution by imposing growth rate parameters 
and (ii) estimating the parameters of the proposed Weibull distribution model using a 
simulated annealing algorithm. This study will benefit investment decision-makers in 
making appropriate investment decisions with minimum risk and higher investment returns 
to the insurance company for evaluating investment claims and setting premiums at a level 
that will cover these claims, and leave an ample profit for shareholders.

MATERIALS AND METHODS

Weibull Distribution Model

Let tx  be a random sample of size N from IRR data. Let ( , , , )tF x α β η  donate the cumulative 
density function (CDF) of Weibull distribution (WD) presented in Equation 1 as follows, 
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where ( , , , )tf x α β η  is used to define the corresponding probability density function (PDF) 
presented in Equation 2 as follows,
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In our study, x1 is the internal rate of return (IRR) data generated over investment period 
t; 0β >  is the shape parameter (slope/threshold); 0η >  is defined as the scale parameter 
(characteristic life) of the distribution showing how spread the internal rate of return (IRR) 
data is over investment period, and 0α ≥  is used to denote the location of the distribution. 
The Weibull PDF satisfies the following properties:
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(i) Weibull distributions function f is decreasing with ( )tf x →∞ as 0tx +→  when the 
value of shape parameter is 0 1,β< <

(ii) Weibull distributions function f is decreasing with ( ) 1tf x →  as 0tx +→  when the 
value of shape parameter is 0β =

(iii) Weibull distributions when 0β =  the Weibull distribution function f increases 

and later decreases, with a maximum value at the mode as 
1

11tx
β

η
β

 
= − 

 
(iv) For all ( ) 0tf x →  as 0tx +→ .

In the case where the parameter 0α = , the PDF in Equation (2) reduces to 2-parameter 
Weibull distribution in Equation 3,

1

, 0, , 0
( , , )

0 ,

x
t

t

Weibull t

t

x e x
f x

x

β β

ηβ β η
β η η η

α

−
 
− 
 

  
≥ >  =   

 ≤

    (3)

with the respective CDF of Weibull as Equation 4,

1 , 0( , , )
0 ,

xt

t
Weibull t

t

e xF x
x

β

η

β η
α

 
− 
 

 − ≥= 
 ≤

      (4)

In the case where the parameter 0α =  and cβ =  (c is constant), the Weibull PDF in Equation 
3 reduces to 1-parameter Weibull distribution in Equation 5,
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where only the scale parameter ( )η  is unknown in the distribution.
In this study we consider Equation 3, the two parameters Weibull distribution. The 
expectation of the Weibull PDF is presented as Equation 6,
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The following Equations 7-12 has been derived by substituting ( )tf x  from Equation 3,
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The variance of IRR Weibull PDF is as in Equation 13,
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The following Equations 15-18 has been derived by substituting ( )tf x  from Equation 3,
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where Γ  is the Gamma function expression as Equation 19, 

( ) 1

0
, 0dd e d dρρ ρ

+∞ − −Γ = >∫       (19)

where ( ) ( ) ( )1 , 1 !p p p n nΓ + = Γ Γ + = . The cumulative distribution function (CDF) of the 
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Weibull distribution can be obtained by integrating Equation 3 expressed as Equation 20,
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Weibull distribution interpolates between the standard exponential distribution when 1η = .  
It can be reduced to another special distribution called the Rayleigh distribution by setting 
the shape parameter 2β = . Several techniques have been used in estimating the unknown 
value of the Weibull distribution. In this study, a simulated annealing algorithm (SAA) 
incorporated in (MLE) has been utilised to maximise the Weibull distribution’s fitness 
function. To the best of the author’s knowledge, a simulated annealing algorithm (SAA) 
was not utilised to estimate the parameters of the modified version of Weibull distribution. 

Mathematical Formulation of the Modified Internal Rate of Return Modelling

The investment strategy for holding the stock is allocating a level amount of contribution 
for K years at the beginning of the year. If we wish to hold the stock for the company chosen 
in the long term period, the stock valuation can also be seen by computing the (modified) 
internal rate of return (M)IRR). At the same time, if the company declares dividends yearly, 
the cash dividends are reinvested and together deposited with the level contribution to 
enlarging the share units. We let all our share units earn the share capital at the end of K 
years, indicating our investment profit. If our share capital is less than our total contribution, 
we may expect our MIRR to be in a negative form. The detailed procedure of the investment 
return was documented in Sabri and Sarsour (2019) is presented as Equations 21 and 22,
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where [ ]1,2,...,k K∈  is defined as the Net Present Value (NPV) of stock investment, 
computed at time zero. (2)

kS  is accumulated share unit after share issuance at the end of 
the year k, which can be computed as Equation 23, 

(2) (1)
k k kS Sψ= ×         (23)

where kψ  is the function of share issuance, k is the share units at the beginning of the year 
k, and F(K)  is the terminal value investment fund to be let at the end of the year K K , 
which can be computed as Equation 24,

( 2)
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F K S P B δ
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where ,1ku  represent the date of share purchased and sold, ,2ku , is the date of dividend 
and share issued based on the stock reported on year k, 

,2kuP  defined the stock price at the 
date ,2ku , kB  represents the cash balance at the year k , Kδ  defined as a cash dividend at 
year k, r represents the modified internal rate of return (MIRR) of the Malaysian property 
development companies (MPDS), C is the yearly fixed contribution which can be computed 
as Equation 25,

 *

1
k

k

C
C

µ=          (25)

It is very important to choose the best potential stocks to hold in the long term (long 
term investment). Furthermore, holding a stock for a K-years period of the investment may 
vary in terms of MIRR. For example, some might choose the best time to start investing, 
but it is tough to identify it as the MIRR measure can only be observed yearly. Therefore, 
assuming the MIRR for all starting times to invest is common, we may define the MIRR, 
denoted as tiKR , as a random variable having the mean and variance ( )KE R  and ( )KVar R
according to MIRR distribution.

Modified Internal Rate of Return on the assumption of Weibull Distribution

After acquiring the Weibull distribution parameters, a rate of return of the Malaysian 
property development sector (MPDS) can be observed for both short and long-term 
investment periods. In investment, we may obtain a positive value of profit (or even be 
greater than our capital investment) as well as poorly earn nothing. It indicates our capital of 
investment K could be infinite or even zero value. For some time K, our terminal investment 
( )1 K

KC R+  is in between 0 to infinity Equation 26,

( )0 1 1K

tiK tiKC R R< + < ∞→ − < < ∞       (26)

since the rate of return is non-negative ( ). 1tiKi e R > − , we transformed the rate of return, 

iKX τ
 according to Equation 27 as follows,

1iT iTX Rτ τ= +         (27)

The Weibull distribution (WD) is flexible and easily applied in modelling many different 
forms of data (Thomas, 1995). The MIRR data will be modelled on the modified Weibull 
distribution (WD) assumption but the shape and scale parameters are unknown. The 
transformed MIRR data (X tiK) is assumed to come from the Weibull distribution (WD) in 
this study. A continuous random variable X tiK is said to follow Weibull distribution with 
parameters 0, 0K Kα β> >  and 0Kη >  to be estimated as follows ( ), ,tiK K K KX Weibull α β η�

if its PDF is given by Equation 28,
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From Equation (27), the mean of the three parameters WD is defined as Equation 29,
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where Γ  signifies a gamma function of the parenthetic expression, defined as Equation 30,
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The variance of the three parameters WD is a function of the shape ( )Kβ  and scale 
parameters ( )Kη  deduced as Equation 31, 
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A higher variance would generally provide a lower investment return at the same point in 
time. If we wish to re-write the MIRR based on the Weibull distribution in Equation 28, 
we may have the following Equation 32,
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this will also indicate that mean and variance in Equations 29 and 31 can be re-written in 
terms of the transformed MIRR in Equations 33 and 34, respectively,
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Incorporating Growth Rate Parameter on Weibull distribution

The Internal rate of investment return (IRR) is usually used as a tool capable of evaluating 
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the behaviour of cash flows (Sabri & Sarsour, 2019; Sarsour & Sabri, 2020a; Sarsour & 
Sabri, 2020b). Investigating the behaviour of investment return can be a challenging task 
due to its non-linearity, non-stationary, and high uncertainty. The Weibull distribution model 
is flexible in estimating components exhibiting increasing, constant and decreasing failure 
rate functions; however, it cannot directly fit those products with bathtub shapes or other 
non-monotonic failure rates functions such as internal rate of return and insurance claims 
data (Tang et al. 2002; Boonta & Boonthiem, 2019). The importance of such an extension 
has been proved in recent years on various problems. Many standard distributions have 
been generalised (Pobočíková et al., 2018). A list of well-being indicators may include 
profit, risk and uncertainly and failure rate (Boonta & Boonthiem, 2019). Those indicators 
also represent essential aspects of the investment return. In this context, it is necessary 
to modify the existing Weibull distribution that takes those characteristics into account. 
Parameters are added as viable alternatives to deal with the complexity and the multiple 
objectives that financial decisions can possess. The model considers the dynamic nature and 
uncertainty involved in the rate of return in taken investment decision which is assumed to 
undergo growth or decay according to some rate of investment return over the investment 
period (Kellison, 2009). We imposed a growth rate ( )ω  for the investment period 2K ≥  
that follows Equation 35,

( ) 1
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tiK tiX Xω −

= +         (35)

For 2 year investment period, the value 2,K =  we have Equation 36, 

( )2 11ti tiX Xω= +         (36)

with the mean ( )tiKE X  and the variance ( )tiKVar X  in Equations 37 and 38, respectively 
as follows,

( ) ( ) ( )1
11 K

tiK tiE X E Xω −= +       (37)

( ) ( ) ( )( )21
11 K

tiK tiVar X Var Xω −= +      (38)

Substituting Equations 35 and 36 into Equations 37 and 38, respectively yields 
Equations 39 and 40,
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β

−  
= + Γ + + 

 
     (39)

( ) ( )
2

1 2 22 11 1 1K
tiK K

K K

Var X ω η
β β

−     
= + Γ + −Γ +           

   (40)



2777Pertanika J. Sci. & Technol. 29 (4): 2767 - 2790 (2021)

Weibull Distribution for Investment Return Modelling

For example, if 5K = , then the transformed MIRR of 5R  based on Weibull distribution 
with PDF of three parameters will be Equation 41,

( )
( )
( )

( )
( )

5
5 55

4
5

5

11
15 55

545 5 5 5 5 5

1
, 1; , , , 1

0

ti

ti
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tiX ti

r
e rf X

Otherwise

β
αβ

ω ηαβ
α β η ω η ω η

 + −−  −
 + 


  + −   > −=   + 

  (41)

According to Equation 32, the mean ( )tiKE X  and the variance ( )tiKVar X  of Equation 41 
will be Equations 42 and 43,

( ) ( ) ( )4
5 51ti tiE X E Xω= +       (42)

( ) ( )
2

4 2 2
5

2 1var 1 1 1ti K
K K

X ω η
β β

     
= + Γ + −Γ +           

   (43)

By setting 0Kα = , Equation (41) is transformed into three-parameter Weibull distribution 
with ω  a growth rate as Equation 44,

( ) ( )
( )

5
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1
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β η ω η ω η
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 + 


    >=   + 

   (44)

If we consider the period of investment to be studied until K* years, for the sample size n 
and the maximum of the years that the data has been collected is T. We re-write Equation 
44 in general form as Equation 45,

( ) ( )
( ) 1

1
1

1 , 0; , , 1

0

K

K tiK
K

K

tiK

X

tiKK
tiKKX tiK K K K K

X e Xf X

Otherwise

β
β

ω ηβ
β η ω η ω η

−

 −  −
 + 

−


    >=   + 

  (45)

For a period of investment, K, the ML of a random sample of 1 2 3 *, , ,..., Kx x x x  size K*, 
where *K K∈  has been considered and the maximum investment period that MIRR 
data have been collected is T. The likelihood function of Weibull PDF in Equation 45 is 
presented as Equation 46,
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The likelihood function of Weibull PDF in Equation 46 can be simplified to factor tiK KX and η and 
tiK KX and η  as Equation 47,

( )
( ) 1

1
*

11
1

1

1
1

K
K tiK

K
KK

tiKK

X
K

K
K

K K

X e

β
β

ω ηβ
β

β
η ω

−

 −
 −
 +−  

−
=

 
=  

 + 
∏     (47)

The likelihood function of Weibull PDF is presented in Equation 47 can be simplified as 
Equation 48,
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The Log-likelihood function of Equation 48 is presented as Equation 49,
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          (49)

where a vector ( ), ,K Kξ β η ω∈


 is described as model parameters to be estimated. The 
vector ( )L ξ


 is considered as a non-linear objective function and ξ


 is taken as a decision 

variable, the problem can be taken as an unrestricted nonlinear optimisation problem that 
could then be computed by maximising the Weibull distribution based on the simulated 
annealing (SAA) procedure proposed by Abbasi et al. (2006) presented in the next section. 
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          (50)

It is quite difficult and exhaustive to search the parameters of Equation 50 to attain the 
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complicated objectives function as observed by Abbasi et al. (2006), Abbasi et al. (2011), 
and Yonar and Pehlivan (2020). Metaheuristics algorithms have been incorporated to reduce 
the complication involved in estimating the parameters,

Simulated Annealing Algorithm (SAA)

Simulated annealing (SAA) is one of the first single-based stochastic metaheuristics 
optimisation algorithms. It is inspired by the simulated thermodynamic process used in 
metallurgic for solidification studied in statistical mechanics, in which a material changes 
state while reducing its energy state to the lowest level (Kirkpatrick et al., 1983). Simulated 
annealing is considered one of the most powerful computation methods applied in solving 
the optimisation problem in almost every area. This physical process occurs after the 
metal is removed from the heat source. When the molten material is physically rinsed, the 
temperatures are decreased very slowly as heat passes to the surrounding environment 
to crystallise into one large crystalline lattice structure, and metal becomes solid at this 
stage. The energy has reached its minimum level. The SAA can be slow in reaching the 
optimal solution because optimal results require a very slow lowering of the temperature 
with control from iteration to iteration (well organised and perfect structure). The resulting 
lattice structure is probably not ideal if the crystallisation is too fast (imperfect structure). 
The advantages SAA possessed over other metaheuristics include; easy implementation, 
finding a globally optimal solution that is feasible even after finding a locally optimal 
solution, and satisfactory results are guaranteed with a relatively low number of iterations.

Generally, the SAA algorithm is based on the stochastic search technique, which 
generates perturbation of the current state at a random instance that make up the solution 
area which later undertakes series of operations such as initialisation, measure the quality of 
the solution, and if it is better than the new one, accept the solution that could lead a better 
searching technique of the SAA, to escape from local optima and to be in close vicinity of 
the region where the optimal solution could be located quickly. Since its implementation, 
SAA has been updated and extended to many mathematical and engineering domains.  
In this work, a robust and powerful heuristics search technique known as SAA has been 
established for effectively searching the MLE fitness function for Weibull Distribution 
based on simulated data set mimicking the internal rate of return. In this regard, the steps 
of the SAA implementation is presented in the next section. 

SAA Implementation

A simulated annealing algorithm (SAA) is a two-step search process that includes perturbing 
the solution and evaluating its quality. Usually, to decide about the acceptance of the new 
solution, the algorithm uses the solution error. It is a stochastic method design to solve 
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multidimensional global optimisation, i.e. problems with the following Equation 51,

( ) ( ) ( ) ( )min max
i i

opt optX X
f f or f f

ξ ξ
ξ ξ ξ ξ

∈ ∈
= =   

   
    (51)

where the variable i Xξ ∈  is variable to be estimated via SAA. This representation is 
common to most optimisation algorithms. However, SAA is a temperature-dependent search 
procedure and the process temperature. Let iτ  be represented as the process temperature 
as Equation 52, 

( )min max min
1i T T Tτ λ τ λ λ= + ∗ −      (52)

where 
min

Tλ  and max
Tλ  are defined as the initial and final temperatures, N is the number of 

temperatures, and the values of 1 [0, ]Nτ ∈  are chosen based on a specific cooling schedule 
considered problem-dependent. It is advisable to repeat a fixed number of iterations at each 
temperature before the temperature drops to enhance the performance of SAA. 

There are some specific criteria to accept a solution once it has been perturbed. One 
obvious requirement is to accept a solution whenever there is less error than the previous 
solution. The metropolis algorithm has been used in SAA to compute the probability of 
acceptance for a perturbed solution. During the annealing process, each new solution ix  
was accepted with a temperature-dependent probability TP  given by Equation 53,

( ) ( )
( ) ( )

( ) ( )
,

1

j i

T

j i

f x f xT
k

j i

if f x f x
P

e if f x f x
≤

 ≤


= 
 ≥

     (53)

where T is the current temperature, and ( ) ( )i jf x and f x and ( ) ( )i jf x and f x  are the fitness scores of the worst 
vertex ix  and new vertex of the simplex, respectively.

Performance Evaluation

Several tests were carried out to examine the suitability of the proposed modified Weibull 
distribution in describing the behaviour of investment return in terms of the accuracy and 
error accumulations during the parameter estimation process. The performance of the 
proposed model has been evaluated in terms of their R-square(R2), mean absolute error 
(MAE), root means squared error (RMSE), Akaike’s information criterion (AIC), and the 
Kolmogorov-Smirnov test (KS) to ascertain the difference between the true and estimated 
distribution functions. The formulation of the statistical test used is presented in Equations 
54-58, respectively, 
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where � ( )tiKF X  and F  described the observed and the estimated parameters respectively, 
n  defined as the total number.

Simulation Study

This section extends the two-parameters Weibull distribution to three Weibull distributions 
by imposing growth rate parameters on the existing Weibull model. The purpose is to 
investigate the long-term investment return that allows for identifying and forecasting 
company performance. Forecasting business return is necessary to properly analyse the 
business performance in either short-term or long-term periods. The analysis was conducted 
based on simulated data mimicking the internal rate of return (IRR). The parameters have 
been estimated for every sample size. We set the proposed Weibull distribution on the 
random variable X to mimic the simulation experiment’s internal rate returns (IRR). The 
samples of different sizes [10,100]n∈ were generated using Microsoft Excel 365. The 
parameters have been estimated via a programme executed on a Python programming 
language. Finally, the performance has been computed based on the goodness of fit using 
Microsoft Excel 365 for transparency. 

Experimental Study

This section presents the experimental study used to analyse and compare the simulated 
data’s fitness on the proposed model. First, the experimental methodology applied in this 
study, the definition of the algorithm and parameters are presented. Then, the experimental 
results and the statistical tests carried out to evaluate these results are outlined. Finally, a 

m a x m a x
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discussion based on the performance of the proposed methodology is provided. A dataset 
randomly generated were used in conducting the statistical analysis and evaluating the 
proposed Weibull model performance. The following procedures are adopted to generate 
random samples on the assumption of both the proposed and the existing models;

(i) choose starting values for the scale, shape, and growth rate parameters and 
determine the sample size n;

(ii) generate a random sample of size n from the proposed Weibull distribution;
(iii) compute the estimates of the distribution parameters; and
(iv) redo the steps (ii) and (iii) N times.
This study is carried out on a computer with Intel Core i3 CPUs and 8 GB RAM. The 

SA algorithm (Figure 1) has been developed using a Python programming language. Ten 
thousand independent runs of the SA algorithm are conducted to get several near-optimal 
solutions. The estimated parameters have been reported in Table 1, while Table 2 reported 
the goodness of fit of the proposed model based on simulated data. The source code file 
for the computational procedure on Excel 365 and a Python source is available on request 
from the authors.  

Figure 1. Flow diagram of SA algorithm
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T >T fin

i  >L max

NO

NO
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Table 2
Performance evaluation of modified Weibull distribution based on simulation data

n Weibull Distribution AIC MAE RMSE R2 KS
10 W(β,η) -36.0919 0.4375 0.4815 0.9799 0.7466

W(β,η,ω) -21.7737 0.4045 0.4486 0.8856 0.6785
20 W(β,η) -76.1838 0.5250 0.5989 0.3214 1

W(β,η,ω) -49.5474 0.3342 0.3718 0.9578 0.5631
30 W(β,η) -1377.97 0.5167 0.7248 0.7077 0.9999

W(β,η,ω) -61.0438 0.1443 0.2083 0.8400 0.3511
40 W(β,η) -9503.09 0.5125 0.5882 NA 1

W(β,η,ω) -67.4992 0.2624 0.2985 0.9820 0.5339

RESULTS AND DISCUSSION

The result of the estimates of unknown parameters of the proposed and the existing Weibull 
distributions are presented in Table 1. In addition, the goodness of fit test in terms of R2, 
MAE, RMSE, AIC, and K-S are listed in Table 2, while Figures 2 to 6 are the graphs 
displaying the results presented in Table 2 for easy analysis.  

Table 1
Estimated parameter of Weibull distribution with Log-likelihood

n Weibull Distributions Parameter estimates LogL 
10 W(β,η) 2.9756, 1.4319 -13.7038

W(β,η,ω) 0.8647, 2.1491, -0.9832 -7.4251
20 W(β,η) 13.5808, 13.9272 -810.5536

W(β,η,ω) 1.3748, 1.4231, -0.7430 -15.5342
30 W(β,η) 7.644, 12.4506 -686.9850

W(β,η,ω) -0.5301,0.8923, -1.2423 -27.5219
40 W(β,η) 33.0149, 17.7373 -4749.5452

W(β,η,ω) 1.0475, 1.5442, -1.1191 -30.7496
50 W(β,η) 65.0825, 39.5618 -14997.9228

W(β,η,ω) -0.2513, -11.1642, -1.2499 -82.6765
60 W(β,η) 14.2972, 16.3663 -2238.2231

W(β,η,ω) 1.0611, 1.5789, -1.4742 -25.5201
70 W(β,η) 66.8042, 65.6898 -23732.7831

W(β,η,ω) 0.9798, 2.1389, -0.7372 -69.3542
80 W(β,η) 48.3294, 22.6938 -15548.6651

W(β,η,ω) 0.8383, 46.8547, -0.9204 -260.8670
90 W(β,η) 159.9159, 79.6757 -78334.6861

W(β,η,ω) 0.9979, 1.9992, -0.5261 -84.0295
100 W(β,η) 11.2265, 7.4906 -2904.6339

W(β,η,ω) 0.92011, 2.6081, -1.4491 -112.6159
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Figure 2. MEA Evaluation of models performance
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Figure 3. RMSE Evaluation of models performance

Table 2 (continue)

n Weibull Distribution AIC MAE RMSE R2 KS
50 W(β,η) -19010.2 0.51000 0.5860 N A 1

W(β,η,ω) -171.3530 0.2298 0.2838 0.8752 0.5802
60 W(β,η) -4480.45 0.5083 0.5845 NA 1

W(β,η,ω) -57.0402 0.2666 0.3100 0.9922 0.5472
70 W(β,η) -47469.6 0.5071 0.5835 NA 1

W(β,η,ω) -144.7083 0.2965 0.3508 0.9849 0.6222
80 W(β,η) -31101.3 0.5062 0.5828 NA 1

W(β,η,ω) -527.7340 0.4853 0.5590 0.9977 0.9615
90 W(β,η) -62206.7 0.5055 0.5822 NA 1

W(β,η,ω) -174.0589 0.2987 0.3451 0.9845 0.6076
100 W(β,η) -124417 0.505 0.5082 0.5082 1

W(β,η,ω) -231.2317 0.3052 0.3618 0.9831 0.6631
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Figure 4. R-Square Evaluation of models performance

Figure 5. AIC Evaluation of models performance

Figure 6. KS Test Evaluation of models performance
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The estimated parameters and loglikelihood values of the proposed and the existing 
Weibull model have been reported in Table 1. It could be observed that all the estimated 
values showed a proper consistency based on the MAE and RMSE, which seem to decrease 
as the sample size increases in both models. Comparing the proposed model with the 
existing two parameters Weibull distribution, the results revealed that the proposed method 
produces the best-fit results in terms of MAE, RMSE, and R-square statistics in most of 
the cases. Therefore, according to the AIC value, the existing Weibull model is the better 
choice. The results in Table 2 have been displayed in Figures 1 to 5 for better analysis.

The results in Table 2 have been displayed in Figures 2-6 in evaluating the suitability 
of the proposed model in fitting the simulated data using MAE, RMSE, R-square, AIC, 
and KS test throughout the optimisation process. The best model was evaluated according 
to minimum MAE, RMSE, AIC, KS values, and high R-square values. Figures 2 and 3 
displayed the MAE and RMSE of the simulated data from n = 10 to 100 sample size, 
mimicking IRR data on the assumption of the proposed model. It is observed that the error 
accumulation in the existing two-parameter Weibull distribution is constantly high with 
the increase in sample size for different values of the parameters. On the other hand, the 
errors decrease slightly with the increase in sample size. For example, at a sample of size 
80, the MAE and RMSE increase but decrease as the sample size increases. In Figure 4, 
the R-square statistics have been displayed.  

According to the R-square value of the Weibull models, the proposed model displayed 
high value through the simulation than the existing model. It is noticed that the existing 
Weibull model is found more complex in calculating the R-square value based on simulated 
data. It might be due to a large amount of error accumulation as the sample size increases. 
The R-square value cannot be computed when the sample size is high ( ). 20i e n > . 
R-square exceeds the threshold with the increase in sample size in the existing model. It 
reveals that the simulated data does not follow the model closely enough to make predictions 
confidently and that the data does not appear to follow a specific pattern. In Figure 4, 
Akaike’s information criterion (AIC) has been displayed based on Table 3. According to 
AIC values, the existing model is the better choice. The “best” model will be the one that 
neither under-fits nor over-fits. Although the AIC will choose the best model from a set of 
models, it will not say anything about the absolute quality of the model.  

However, the existing model is still as good as the proposed one according to the AIC 
value. It shows that the existing model is nearly as good as the proposed model. The KS 
result in Table 2 has been displayed in Figure 5, showing the KS test of the proposed model 
as was less than that of the existing methods throughout the simulations experiments. 
The KS test of the existing Weibull distribution is 1 in some instances, especially as the 
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sample size increases. It is an indication that the accumulation of the error is increasing as 
the sample size increases. It revealed that the CDF of the proposed model comes from the 
sample values that are equal to or less than x (i.e. sample data) (Dodge, 2008). Therefore, 
the proposed model is more accurate based on the simulated data used in this study. 
Consequently, the simulated data accepts the Weibull distribution at 95% confidence. The 
finding reveals that the existing two-parameter Weibull best fits a small sample size, while 
the accuracy of the proposed model increases as the sample size increases. The p-values 
are not that different for the smaller sample data. The proposed distribution model has the 
lowest values for all goodness-of-fit statistics among all fitted models. The analysis reveals 
that the proposed modified Weibull distribution provides a good fit to the simulated data 
sets by mimicking the internal rate of return (IRR). 

CONCLUSION

A new distribution based on Weibull distributions has been proposed. Weibull distribution 
is used in modelling a wide variety of data, including wind speed, patient survival, and 
product lifetime. There has been an increasing interest in developing tractable lifetime 
models which fit financial data flexibly. This research proposed a new three-parameter 
Weibull distribution by imposing a growth rate parameter on the existing two parameters 
Weibull distribution model. Some of its characteristics include maximum likelihood 
function along with its characterisations. The estimation of the model parameters is obtained 
using the simulated annealing algorithm approach proposed by Abbasi et al. (2006). The 
experimental study was based on a simulated data set that mimicked the internal return rate 
for sample sizes 10 to 100. Based on the result presented in Tables 1 and 2, we presume that 
the proposed modified Weibull distribution will better fit IRR data when compared with 
the existing model. We have shown that the new modified Weibull distribution fits certain 
well-known data sets better than the existing Weibull distribution. Adding growth rate 
parameters by fixing one of the parameters still provides a better fit than existing models.  
Our future work is to extend the proposed model for the internal rate of return real-life 
data set. Statistical distributions such as gamma distribution, an exponentiated family of 
distribution, Pareto distribution and Rayleigh distribution can be modified to accommodate 
growth rate parameters to achieve better financial data fitting. Furthermore, the research 
will further explore various evolutionary computations and other metaheuristic algorithms 
to estimate the parameters of the proposed model.
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