PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abodi, J. A., & Li, X. (2014). An effective approach to offline Arabic handwriting recognition. Computers Electrical Engineering, 40(6), 1883-1901. https://doi.org/10.1016/j.compeleceng.2014.04.014

  • Alharbi, A. (2018). A genetic-LVQ neural networks approach for handwritten Arabic character recognition. Artificial Intelligence Research, 7(2), 45-54. https://doi.org/10.5430/air.v7n2p43

  • Belabiod, A., & Belaïd, A. (2018). Line and word segmentation of Arabic handwritten documents using neural networks (Research Report LORIA). Université de Lorraine. https://hal.inria.fr/hal-01910559

  • Burrow, P. (2004), Arabic handwriting recognition (Master of Science). University of Edinburgh, UK. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.404&rep=rep1&type=pdf

  • Eladel, A., Ejbali, R., Zaied, M., & Amar, C. B. (2015). Dyadic multi-resolution analysis-based deep learning for Arabic handwritten character classification. In Proceedings of 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 807-812). IEEE Publishing.

  • Elleuch, M., Maalej, R., & Kherallah, M. (2016). A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition. Procedia Computer Science, 80, 1712-1723. https://doi.org/10.1016/j.procs.2016.05.512

  • Goularas, D., & Kamis, S. (2019). Evaluation of deep learning techniques in sentiment analysis from Twitter data. In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML) (pp. 12-17). IEEE Publishing. https://doi.org/10.1109/Deep-ML.2019.00011

  • Guellil, I., Saâdane, H., Azouaou, F., Gueni, B., & Nouvel, D. (2021). Arabic natural language processing: An overview. Journal of King Saud University, Computer and Information Sciences, 33(5), 497-507. https://doi.org/10.1016/j.jksuci.2019.02.006

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proocedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770-778). IEEE Publishing. https://doi.org/10.1109/CVPR.2016.90

  • Hussien, R. S., Elkhidir, A. A., & Elnourani, M. G. (2016). Optical character recognition of Arabic handwritten characters using neural network. In Proceedings of 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE) (pp. 456-461). IEEE Publishing. https://doi.org/10.1109/ICCNEEE.2015.7381412

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communication ACM, 60(6), 84-90. https://doi.org/10.1145/3065386

  • Najadat, H. M., Alshboul, A. A., & Alabed, A. F. (2019). Arabic handwritten characters recognition using convolutional neural network. In Proccedings of 10th International Conference on Information and Communication Systems (ICICS) (pp. 147-151). IEEE Publishing. https://doi.org/10.1109/IACS.2019.8809122

  • Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M., Chen, S., & Iyengar, S. (2019). A survey on deep learning: Algorithms, techniques, and applications. ACM Computer Surveys, 51(5), 1-36. https://doi.org/10.1145/3234150

  • Razak, H. A., AlMisreb, A. A., Saleh, M. A., & Tahir, N. M. (2020a). Housebreaking crime gait pattern classification using artificial neural network and support vector machine. Journal of Theoretical and Applied Information Technology, 98(12), 2185-2198.

  • Razak, H. A., Saleh, M. A., & Tahir, N. M. (2020b). Review on anomalous gait behavior detection using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 9(5), 2090-2096. https://doi.org/10.11591/eei.v9i5.2255

  • Savchenko, A. V. (2020). Probabilistic neural network with complex exponential activation functions in image recognition. IEEE Transactions on Neural Networks and Learning Systems, 31(2), 651-660. https://doi.org/10.1109/TNNLS.2019.2908973

  • Simonyan, K., & Zisserman, A. (2015, May 7-9). Very deep convolutional networks for large-scale image recognition. In Proceedings of 3rd International Conference on Learning Representations, (ICLR) 2015 (pp. 1-14). San Diego, USA. https://arxiv.org/abs/1409.1556

  • Szegedy, C., Liu, W., Jia, Y., Arbor, A., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1-9). IEEE Publishing. https://doi.org/10.1109/CVPR.2015.7298594

  • Wahdan, A., Sendeyah, A. L., Hantoobi, S. A., & Salloum, K. S. (2020). A systematic review of text classification research based on deep learning models in Arabic language. International Journal of Electrical and Computer Engineering (IJECE), 10(6), 6629-6643. http://dx.doi.org/10.11591/ijece.v10i6.pp6629-6643

  • Wang, G. (2019). The status of Chinese handwriting identification and the improvement of methodologies. Forensic Science Criminology, 4(1), 1-7. http://dx.doi.org/10.15761/FSC.1000129

  • Wang, P. (2020). Research and design of smart home speech recognition system based on deep learning. In 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China (pp. 218-221). IEEE Publishing. https://doi.org/10.1109/CVIDL51233.2020.00-98

  • Wong, L. C., & Loh, W. P. (2019). Segregating offline and online handwriting for conditional classification analysis. IOP Conference Series: Materials Science and Engineering, 530, Article 012058. http://dx.doi.org/10.1088/1757-899X/530/1/012058

  • Yang, L., Hanneke, S., & Carbonell, J. (2013). A theory of transfer learning with applications to active learning. Machine Learning, 90(2), 161-189. http://dx.doi.org/10.1007/s10994-012-5310-y

  • Yildiz, A., Almisreb, A. A., Dzakmic, S., Tahir, N. M., Turaev, S., & Saleh, M. A. (2020). Banknotes counterfeit detection using deep transfer learning approach. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 8115-8122. http://dx.doi.org/10.30534/ijatcse/2020/172952020

  • Younis, K. S. (2017). Arabic hand-written character recognition based on deep convolutional neural networks. Jordanian Journal of Computers and Information Technology (JJCIT), 3(3), 186-200.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles