e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 32 (2) Mar. 2024 / JST-4299-2023


Microencapsulation of Citrus Hystrix Essential Oil by Gelatin B/Chitosan Complex Coacervation Technique

Siti Afiqah ‘Aisyah Murtadza, Nurul Asyikin Md Zaki, Junaidah Jai, Fazlena Hamzah, Nur Suhanawati Ashaari, Dewi Selvia Fardhyanti, Megawati and Nadya Alfa Cahaya Imani

Pertanika Journal of Social Science and Humanities, Volume 32, Issue 2, March 2024


Keywords: Chitosan, coacervation, encapsulation efficiency, essential oils, gelatin, microencapsulation

Published on: 26 March 2024

Complex coacervation is an encapsulation technique used to preserve the bio functionality of essential oils as well as provide controlled release. In this present work, encapsulation of Citrus Hystrix essential oil (CHEO) was formed by a complex coacervation technique with Gelatin-B (Gel B) and Chitosan (Chi) as the capping materials. The suitable encapsulation formulation was investigated as a function of pH and wall ratio using Zeta Potential analysis. Turbidity measurement and coacervate yield were carried out to confirm the suitable condition. Total Phenolic Content (TPC) was used to obtain the encapsulation efficiency (EE%) of the process. Results show that the suitable condition for coacervate formation between Gel B and Chi ratio of 5:1 was at pH 5.8, which produced a high encapsulation efficiency of 94.81% ± 2.60. FTIR analysis validates the formation of coacervate as well as the encapsulated CHEO. The encapsulates obtained were spherical and dominated by 194.557 um particles. The CHEO was successfully encapsulated by a complex coacervation method.

  • Adamiec, J., Borompichaichartkul, C., Srzednicki, G., Panket, W., Piriyapunsakul, S., & Zhao, J. (2012). Microencapsulation of kaffir lime oil and its functional properties. Drying Technology, 30(9), 914-920.

  • Ahmed, A. F., Attia, F. A. K., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299-305.

  • Ashaari, N. S., Mohamad, N. E., Afzinizam, A. H., Rahim, M. H. A., Lai, K. S., & Abdullah, J. O. (2021). Chemical composition of hexane-extracted plectranthus amboinicus leaf essential oil: Maximizing contents on harvested plant materials. Applied Sciences, 11(22), Article 10838.

  • Aziz, F. R. A., Jai, J., Raslan, R., & Subuki, I. (2015). Microencapsulation of essential oils application in textile: A review. Advanced Materials Research, 1113, 346-351.

  • Aziz, F. R. A., Jai, J., Raslan, R., & Subuki, I. (2016). Microencapsulation of citronella oil by complex coacervation using chitosan-gelatin (b) system: Operating design, preparation and characterization. MATEC Web of Conferences, 69, Article 04002.

  • Aziz, S., Gill, J., Dutilleul, P., Neufeld, R., & Kermasha, S. (2014). Microencapsulation of krill oil using complex coacervation. Journal of Microencapsulation, 31(8), 774-784.

  • Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182.

  • Burgess, D. J., & Carless, J. E. (1984). Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. Journal of Colloid and Interface Science, 98(1), 1-8.

  • Burgess, D. J., & Carless, J. E. (1985). Manufacture of gelatin/gelatin coacervate microcapsules. International Journal of Pharmaceutics, 27(1), 61-70.

  • Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8), 5156-5186.

  • Comunian, T. A., & Favaro-Trindade, C. S. (2016). Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, 61, 442-457.

  • De Matos, E. F., Scopel, B. S., & Dettmer, A. (2018). Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering, 6(2), 1989-1994.

  • Dima, C., Pətraşcu, L., Cantaragiu, A., Alexe, P., & Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry, 195, 39-48.

  • Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296-302.

  • Dong, Z. J., Touré, A., Jia, C. S., Zhang, X. M., & Xu, S. Y. (2007). Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation. Journal of Microencapsulation, 24(7), 634-646.

  • Eghbal, N., & Choudhary, R. (2018). Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT, 90, 254-264.

  • Elzoghby, A. O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 172(3), 1075-1091.

  • Emamverdian, P., Moghaddas Kia, E., Ghanbarzadeh, B., & Ghasempour, Z. (2020). Characterization and optimization of complex coacervation between soluble fraction of Persian gum and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, Article 125436.

  • Espinosa-Andrews, H., Enríquez-Ramírez, K. E., García-Márquez, E., Ramírez-Santiago, C., Lobato-calleros, C., & Vernon-Carter, J. (2013). Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydrate Polymers, 95(1), 161-166.

  • Fan, S., Wang, D., Wen, X., Li, X., Fang, F., Richel, A., Xiao, N., Fauconnier, M., Hou, C., & Zhang, D. (2023). Incorporation of cinnamon essential oil-loaded pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocolloids, 138, Article 108438.

  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols - A review. Trends in Food Science and Technology, 21(10), 510-523.

  • Fraj, J., Petrović, L., Đekić, L., Budinčić, J. M., Bučko, S., & Katona, J. (2021). Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. Journal of Food Engineering, 292, Article 110353.

  • Ghadermazi, R., Asl, A. K., & Tamjidi, F. (2019). Optimization of whey protein isolate-quince seed mucilage complex coacervation. International Journal of Biological Macromolecules, 131, 368-377.

  • Gharanjig, H., Gharanjig, K., Hosseinnezhad, M., & Jafari, S. M. (2020). Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, 148, 31-40.

  • Girardi, N. S., García, D., Passone, M. A., Nesci, A., & Etcheverry, M. (2017). Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration and Biodegradation, 116, 227-233.

  • Gonçalves, N. D., Grosso, C. R. F., Rabelo, R. S., Hubinger, M. D., & Prata, A. S. (2018). Comparison of microparticles produced with combinations of gelatin, chitosan and gum Arabic. Carbohydrate Polymers, 196, 427-432.

  • Houng, P., Ly, K., & Lay, S. (2023). Valorization of kaffir lime peel through extraction of essential oil and process optimization for phenolic compounds. Journal of Chemical Technology & Biotechnology, 98(11), 2745-2753.

  • Hussein, A. M. S., Lotfy, S. N., Kamil, M. M., & Hassan, M. E. (2016). Effect of microencapsulation on chemical composition and antioxidant activity of cumin and fennel essential oils. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(3), 1565-1574.

  • Kang, M. K., Dai, J., & Kim, J. C. (2012). Ethylcellulose microparticles containing chitosan and gelatin: pH-dependent release caused by complex coacervation. Journal of Industrial and Engineering Chemistry, 18(1), 355-359.

  • Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Complex coacervation between flaxseed protein isolate and flaxseed gum. Food Research International, 72, 91-97.

  • Lakkis, J. M. (2016). Encapsulation and controlled release technologies in food systems. John Wiley & Sons.

  • Lemetter, C. Y. G., Meeuse, F. M., & Zuidam, N. J. (2009). Control of the morphology and the size of complex coacervate microcapsules during scale-up. AIChE Journal, 55(6), 1487-1496.

  • Lubinska-Szczygeł, M., Różańska, A., Dymerski, T., Namieśnik, J., Katrich, E., & Gorinstein, S. (2018). A novel analytical approach in the assessment of unprocessed kaffir lime peel and pulp as potential raw materials for cosmetic applications. Industrial Crops and Products, 120, 313-321.

  • Lv, Y., Zhang, X., Abbas, S., & Karangwa, E. (2012). Simplified optimization for microcapsule preparation by complex coacervation based on the correlation between coacervates and the corresponding microcapsule. Journal of Food Engineering, 111(2), 225-233.

  • Lv, Y., Zhang, X., Zhang, H., Abbas, S., & Karangwa, E. (2013). The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, 30(1), 323-332.

  • Manaf, M. A., Subuki, I., Jai, J., Raslan, R., & Mustapa, A. N. (2018, May). Encapsulation of volatile citronella essential oil by coacervation: Efficiency and release study. In IOP Conference Series: Materials Science and Engineering (Vol. 358, p. 012072). IOP Publishing. https://doi.10.1088/1757-899X/358/1/012072

  • Meka, V. S., Sing, M. K. G., Pichika, M. R., Nali, S. R., Kolapalli, V. R. M., & Kesharwani, P. (2017). A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, 22(11), 1697-1706.

  • Mousavi, M. M., Torbati, M., Farshi, P., Hosseini, H., Mohammadi, M. A., Hosseini, S. M., & Hosseinzadeh, S. (2021). Evaluation of design and fabrication of food-grade nanofibers from chitosan-gelatin for nanoencapsulation of stigmasterol using the electrospinning method. Advanced Pharmaceutical Bulletin, 11(3), 514-521.

  • Ngamekaue, N., & Chitprasert, P. (2019). Effects of beeswax-carboxymethyl cellulose composite coating on shelf-life stability and intestinal delivery of holy basil essential oil-loaded gelatin microcapsules. International Journal of Biological Macromolecules, 135, 1088-1097.

  • Oliveira, W. Q., Araújo, A. W. O., Wurlitzer, N. J., & Maria, S. R. (2019). Effect of the reaction volume on the formation of microparticles of the pequi (Caryocar coriaceum Wittm.) oil by complex coacervation. Chemical Engineering Transactions, 74, 445-450.

  • Otálora, M. C., Castaño, J. A. G., & Wilches-Torres, A. (2019). Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica. LWT, 112, Article 108234.

  • Othman, S. N. A. M., Hassan, M. A., Nahar, L., Basar, N., Jamil, S., Sarker, S., Othman, S. M., Hassan, M. A., Nahar, L., Basar, N., Jamil, S., & Sarker, S. (2016). Essential oils from the Malaysian citrus (Rutaceae) medicinal plants. Medicines, 3(2), Article 13.

  • Pedro, A. S., Cabral-Albuquerque, E., Ferreira, D., & Sarmento, B. (2009). Chitosan: An option for development of essential oil delivery systems for oral cavity care? Carbohydrate Polymers, 76(4), 501-508.

  • Phong, W. N., Gibberd, M. R., Payne, A. D., Dykes, G. A., & Coorey, R. (2022). Methods used for extraction of plant volatiles have potential to preserve truffle aroma: A review. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1677-1701.

  • Poshadri, A., & Aparna, K. (2010). Microencapsulation technology: A review. Journal of Research ANGRAU, 38(1), 86-102.

  • Prata, A. S., & Grosso, C. R. F. (2015). Production of microparticles with gelatin and chitosan. Carbohydrate Polymers, 116, 292-299.

  • Qin, X., Lu, Y., Peng, Z., Fan, S., & Yao, Y. (2018). Systematic chemical analysis approach reveals superior antioxidant capacity via the synergistic effect of flavonoid compounds in red vegetative tissues. Frontiers in Chemistry, 6, Article 314274.

  • Raksa, A., Sawaddee, P., Raksa, P., & Aldred, A. K. (2017). Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (kaffir lime) peel essential oil. Monatshefte Fur Chemie, 148, 1229-1234.

  • Rosli, N. A., Hasham, R., & Aziz, A. A. (2018). Design and physicochemical evaluation of nanostructured lipid carrier encapsulated zingiber zerumbet oil by d-optimal mixture design. Jurnal Teknologi, 80(3), 105-113.

  • Roy, J. C., Giraud, S., Ferri, A., Mossotti, R., Guan, J., & Salaün, F. (2018). Influence of process parameters on microcapsule formation from chitosan - Type B gelatin complex coacervates. Carbohydrate Polymers, 198, 281-293.

  • Rungwasantisuk, A., & Raibhu, S. (2020). Application of encapsulating lavender essential oil in gelatin/gum-Arabic complex coacervate and varnish screen-printing in making fragrant gift-wrapping paper. Progress in Organic Coatings, 149, Article 105924.

  • Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules, 126, 731-742.

  • Shi, L., Beamer, S. K., Yang, H., & Jaczynski, J. (2018). Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation. Food Chemistry, 244, 284-291.

  • Shinde, U. A., & Nagarsenker, M. S. (2009). Characterization of gelatin-sodium alginate complex coacervation system. Indian Journal of Pharmaceutical Sciences, 71(3), 313-317.

  • Silva, M. C., & Andrade, C. T. (2009). Evaluating conditions for the formation of chitosan/gelatin microparticles. Polimeros, 19(2), 133-137.

  • Singh, N., & Sheikh, J. (2022). Novel Chitosan-Gelatin microcapsules containing rosemary essential oil for the preparation of bioactive and protective linen. Industrial Crops and Products, 178, Article 114549.

  • Sogias, I. A., Khutoryanskiy, V. V, & Williams, A. C. (2010). Exploring the factors affecting the solubility of chitosan in water. Macromolecular Chemistry and Physics, 211(4), 426-433.

  • Sreepian, A., Sreepian, P. M., Chanthong, C., Mingkhwancheep, T., & Prathit, P. (2019). Antibacterial activity of essential oil extracted from Citrus hystrix (kaffir lime) peels: An in vitro study. Tropical Biomedicine, 36(2), 531-541.

  • Srifuengfung, S., Bunyapraphatsara, N., Satitpatipan, V., Tribuddharat, C., Junyaprasert, V. B., Tungrugsasut, W., & Srisukh, V. (2020). Antibacterial oral sprays from kaffir lime (Citrus hystrix DC.) fruit peel oil and leaf oil and their activities against respiratory tract pathogens. Journal of Traditional and Complementary Medicine, 10(6), 594-598.

  • Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286.

  • Timilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2016). Preparation and characterization of chia seed protein isolate-chia seed gum complex coacervates. Food Hydrocolloids, 52, 554-563.

  • Venkatachalam, K. (2019). Changes in phytochemicals and antioxidant properties of kaffir lime leaves under chilling storage. Kaen Kaset= Khon Kaen Agriculture Journal, 47(Suppl. 1), 531-536.

  • Vishwakarma, G. S., Gautam, N., Babu, J. N., Mittal, S., & Jaitak, V. (2016). Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms. Polymer Reviews, 56(4), 668-701.

  • Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365.

  • Wang, B., Akanbi, T. O., Agyei, D., Holland, B. J., & Barrow, C. J. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. In A. M. Grumezescu & A. M. Holban (Eds.), Role of Materials Science in Food Bioengineering (pp. 235-261). Academic Press.

  • Wang, H., Lin, X., Zhu, J., Yang, Y., Qiao, S., Jiao, B., Ma, L., & Zhang, Y. (2023). Encapsulation of lutein in gelatin type A/B-chitosan systems via tunable chains and bonds from tweens: Thermal stability, rheologic property and food 2D/3D printability. Food Research International, 173, Article 113392.

  • Wijaya, Y. A., Widyadinata, D., Irawaty, W., & Ayucitra, A. (2017). Fractionation of phenolic and flavonoid compounds from kaffir lime (Citrus hystrix) peel extract and evaluation of antioxidant activity. Reaktor, 17(3), 111-117.

  • Yan, C., & Zhang, W. (2014). Coacervation processes. In R. Sobel (Ed.), Microencapsulation in the Food Industry: A Practical Implementation Guide (pp. 125-137). Academic Press. United States.

  • Yang, J., Han, S., Zheng, H., Dong, H., & Liu, J. (2015). Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydrate Polymers, 123, 53-66.

  • Yu, F., Li, Z., Zhang, T., Wei, Y., Xue, Y., & Xue, C. (2017). Influence of encapsulation techniques on the structure, physical properties, and thermal stability of fish oil microcapsules by spray drying. Journal of Food Process Engineering, 40(6), Article e12576.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles