Home / Regular Issue / JSSH Vol. 29 (1) Mar. 2021 / JSSH-5807-2020


Consumer Adoption of Alipay in Malaysia: The Mediation Effect of Perceived Ease of Use and Perceived Usefulness

Tze Kiat Lui, Mohd Haniff Zainuldin, Kwang-Jing Yii, Lin-Sea Lau, and You-How Go

Pertanika Journal of Social Science and Humanities, Volume 29, Issue 1, March 2021

DOI: https://doi.org/10.47836/pjssh.29.1.22

Published: 26 March 2021

Despite a growing trend in m-wallet services in Malaysia, the actual level of usage is considered low among all of the non-cash payment methods. The Malaysian government has taken a serious initiative in spurring the use of m-wallets by providing a one-off RM30 incentive to all eligible Malaysians. As such, it is important to understand the motivations behind m-wallet usage by examining Alipay, which is favoured in the international, as well as Malaysian markets. This research investigates the effects of mobile payment knowledge, personal innovativeness, self-efficacy, convenience, and compatibility on the actual adoption of Alipay in Malaysia with perceived ease of use and perceived usefulness, as the mediators. Using importance-performance map analysis (IPMA) and Variance Accounted For (VAF), based on Partial Least Squares - Structural Equation Modelling (PLS-SEM) on 260 respondents, it was discovered that compatibility and perceived usefulness demonstrated high importance in improving the performance of Alipay adoption. The results also showed a direct effect between compatibility and mobile payment knowledge. Additionally, perceived usefulness was shown to be an essential mediator in influencing the impact of compatibility and convenience on the actual adoption of Alipay. This study has produced essential policy recommendations for both mobile wallet providers and policymakers on how to further promote the adoption of mobile wallets in Malaysia.

  • Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204

  • Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139. https://doi.org/10.1108/JEIM-04-2015-0035

  • Al-Jabri, I. M., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory. Journal of Electronic Commerce Research, 13(4), 379-391.

  • Arvidsson, N. (2014). Consumer attitudes on mobile payment services – Results from a proof of concept test. International Journal of Bank Marketing, 32(2), 150-170. https://doi.org/10.1108/IJBM-05-2013-0048

  • Axsen, J., TyreeHageman, J., & Lentz, A. (2012). Lifestyle practices and pro-environmental technology. Ecological Economics, 82, 64-74. https://doi.org/10.1016/j.ecolecon.2012.07.013

  • Bailey, A. A., Pentina, I., Mishra, A. S., & Mimoun, M. S. B. (2017). Mobile payments adoption by US consumers: An extended TAM. International Journal of Retail & Distribution Management, 45(6), 626-640. https://doi.org/10.1108/IJRDM-08-2016-0144

  • Bandura, A. (1997). Self-efficacy: The exercise of control. Macmillan.

  • Bank Negara Malaysia. (2019). Payment systems. http://www.bnm.gov.my/index.php?ch=ps&pg=ps_mep_drv_toward&ac=193&lang=en

  • Cheng, Y. M. (2015). Towards an understanding of the factors affecting m-learning acceptance: Roles of technological characteristics and compatibility. Asia Pacific Management Review, 20(3), 109-119. https://doi.org/10.1016/j.apmrv.2014.12.011

  • Chi, T. (2018). Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. Journal of Retailing and Consumer Services, 44, 274-284. https://doi.org/10.1016/j.jretconser.2018.07.019

  • Coursaris, C., & Hassanein, K. (2002). Understanding m-commerce: A consumer-centric model. Quarterly Journal of Electronic Commerce, 3, 247-272.

  • Coursaris, C. K., & Van Osch, W. (2015). Lifestyle-technology fit: Theorizing the role of self-identity in IS research. Computers in Human Behavior, 49, 460-476. https://doi.org/10.1016/j.chb.2015.02.049

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

  • Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-machine Studies, 38(3), 475-487. https://doi.org/10.1006/imms.1993.1022

  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.

  • Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

  • Garrett, J. L., Rodermund, R., Anderson, N., Berkowitz, S., & Robb, C. A. (2014). Adoption of mobile payment technology by consumers. Family and Consumer Sciences Research Journal, 42(4), 358-368.

  • Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4, 7. https://doi.org/10.17705/1CAIS.00407

  • Gu, D., Khan, S., Khan, I. U., & Khan, S. U. (2019). Understanding mobile tourism shopping in Pakistan: An integrating framework of Innovation Diffusion Theory and Technology Acceptance Model. Mobile Information Systems, 2019, 1490617. https://doi.org/10.1155/2019/1490617

  • Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Prentice Hall International.

  • Hair, J. F., Hauff, S., Hult, G. T., Richter, N. F., Ringle, C. M., & Sarstedt, M. (2017). A primer on Partial Least Squares Structural Equation Modelling (PLS-SEM) (2nd ed.). Sage Publication Inc.

  • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation model (PLS-SEM). Sage Publication Inc.

  • Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12.

  • Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about Partial Least Squares: Comments on Ronkko & Envermann (2013). Organizational Research Methods, 17(2), 182-209. https://doi.org/10.1177/1094428114526928

  • Hoofnagle, C. J., Urban, J. M., & Li, S. (2012). Mobile payments: Consumer benefits & new privacy concerns. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2045580

  • Humbani, M., & Wiese, M. (2018). A cashless society for all: Determining consumers’ readiness to adopt mobile payment services. Journal of African Business, 19(3), 409-429. https://doi.org/10.1080/15228916.2017.1396792

  • Isaac, O., Aldholay, A., Abdullah, Z., & Ramayah, T. (2019). Online learning usage within Yemeni higher education: The role of compatibility and task-technology fit as mediating variables in the IS success model. Computers & Education, 136, 113-129. https://doi.org/10.1016/j.compedu.2019.02.012

  • Jahmani, K., Fadiya, S. O., Abubakar, A. M., & Elrehail, H. (2018). Knowledge content quality, perceived usefulness, KMS use for sharing and retrieval: A flock leadership application. VINE Journal of Information and Knowledge Management Systems, 48(4), 470-490. https://doi.org/10.1108/VJIKMS-08-2017-0054

  • Jaradat, M. I. R. M., & Mashaqba, A. M. A. (2014). Understanding the adoption and usage of mobile payment services by using TAM3. International Journal of Business Information Systems, 16(3), 271-296. https://doi.org/10.1504/ijbis.2014.063768.

  • Kabra, G., Ramesh, A., Akhtar, P., & Dash, M. K. (2017). Understanding behavioural intention to use information technology: Insights from humanitarian practitioners. Telematics and Informatics, 34(7), 1250-1261. https://doi.org/10.1016/j.tele.2017.05.010

  • Kadar, H. H. B., Sameon, S. S. B., Din, M. B. M., & Rafee, P. B. A. (2019). Malaysia towards cashless society. In M. Othman, M. Abd Aziz, M. Md Saat, & M. Misran (Eds.), Proceedings of the 3rd International Symposium of Information and Internet Technology (SYMINTECH 2018) (pp. 34-42). Springer, Cham. https://doi.org/10.1007/978-3-030-20717-5_5

  • Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322. https://doi.org/10.1016/j.chb.2009.10.013

  • Kim, H.-Y., Lee, J. Y., Mun, J. M., & Johnson, K. K. P. (2017). Consumer adoption of smart in-store technology: Assessing the predictive value of attitude versus beliefs in the technology acceptance model. International Journal of Fashion Design, Technology and Education, 10(1), 26-36. https://doi.org/10.1080/17543266.2016.1177737

  • Kim, S., & Baek, T. H. (2018). Examining the antecedents and consequences of mobile app engagement. Telematics and Informatics, 35(1), 148-158. https://doi.org/10.1016/j.tele.2017.10.008

  • Kline, R. B. (2011). Principles and practice of structural equation modelling. Guilford.

  • Kock, N., & Lynn, G. S. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendation. Journal of the Association for Information Systems, 13(7), 546-580.

  • Koksal, M. H. (2016). The intentions of Lebanese consumers to adopt mobile banking. International Journal of Bank Marketing, 34(3), 327-346. https://doi.org/10.1108/IJBM-03-2015-0025

  • Li, H., Liu, Y., & Heikkilä, J. (2014). Understanding the factors driving NFC-enabled mobile payment adoption: An empirical investigation. PACIS 2014 Proceedings, 231. https://aisel.aisnet.org/pacis2014/231

  • Lim, V. (2017, June 29). Asia: Increasing digital wallet usage amongst Malaysian consumers. RFi Group. https://www.rfigroup.com/rfi-group/news/asia-increasing-digital-wallet-usage-amongst-malaysian-consumers

  • Lin, H-F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252-260. https://doi.org/10.1016/j.ijinfomgt.2010.07.006

  • Liu, Y., Hong, Z., Zhu, J., Yan, J., Qi, J., & Liu, P. (2018). Promoting green residential buildings: Residents’ environmental attitude, subjective knowledge, and social trust matter. Energy Policy, 112, 152-161. https://doi.org/10.1016/j.enpol.2017.10.020

  • Lunneborg, P. W. (1979). The vocational interest inventory: Development and validation. Educational and Psychological Measurement, 39(2), 445-451. https://doi.org/10.1177/001316447903900226

  • Madan, K., & Yadav, R. (2018). Understanding and predicting antecedents of mobile shopping adoption: A developing country perspective. Asia Pacific Journal of Marketing and Logistics, 30(1), 139-162. https://doi.org/10.1108/APJML-02-2017-0023

  • Martens, M., Roll, O., & Elliott, R. (2017). Testing the technology readiness and acceptance model for mobile payments across Germany and South Africa. International Journal of Innovation and Technology Management, 14(6), 1750033. https://doi.org/10.1142/S021987701750033X

  • Malaysian Communications and Multimedia Commission. (2017). Handphone users survey 2017. https://www.mcmc.gov.my/resources/statistics/hand-phone-surveys

  • Moslehpour, M., Pham, V., Wong, W-K., & Bilgiçli, I. (2018). E-Purchase intention of Taiwanese consumers: Sustainable mediation of perceived usefulness and perceived ease of use. Sustainability, 10(1), 234. https://doi.org/10.3390/su10010234

  • Nascimento, J. C. H. P. D., & Macedo, M. A. D. S. (2016). Modelagem de Equações Estruturais com Mínimos Quadrados Parciais: Um exemplo daaplicação do SmartPLS® em pesquisas em contabilidade [Structural Equation Models using Partial Least Squares: An example of the application of SmartPLS® in accounting research]. Journal of Education and Research in Accounting, 10(3), 282-305. http://dx.doi.org/10.17524/repec.v10i3.1376

  • Nielsen. (2019, January 3). Cash or cashless? Malaysia’s shifting payment landscape. Nielsen. https://www.nielsen.com/my/en/insights/article/2019/cash-or-cashless-malaysias-shifting-payment-landscape/

  • Nuryyev, G., Wang, Y-P., Achyldurdyyeva, J., Jaw, B-S., Yeh, Y-S., Lin, H-T., & Wu, L-F. (2020). Blockchain technology adoption behavior and sustainability of the business in tourism and hospitality SMEs: An empirical study. Sustainability, 12(3), 1256. https://doi.org/10.3390/su12031256

  • Obe, O. O., & Balogun, V. F. (2007). Practice, trends and challenges of mobile commerce in Nigeria. Information Technology Journal, 6(3), 448-456. https://doi.org/ 10.3923/itj.2007.448.456

  • Ondrus, J., Lyytinen, K., & Pigneur, Y. (2009). Why mobile payments fail? Towards a dynamic and multi-perspective explanation. 2009 42nd Hawaii International Conference on System Sciences, 1-10. https://doi.org/10.1109/hicss.2009.510

  • Ozturk, A. B., Bilgihan, A., Nusair, K., & Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management, 36(6), 1350-1359. https://doi.org/10.1016/j.ijinfomgt.2016.04.005

  • Pal, D., Vanijja, V., & Papasratorn, B. (2015). An empirical analysis towards the adoption of NFC mobile payment system by the end user. Procedia Computer Science, 69, 13-25. https://doi.org/10.1016/j.procs.2015.10.002

  • Pham, T. T. T., & Ho, J. C. (2015). The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technology in Society, 43, 159-172. https://doi.org/10.1016/j.procs.2015.10.002

  • Pikri, E. (2018, July 20). How many e-wallets is too many wallets in Malaysia? Fintech Malaysia. https://fintechnews.my/17900/payments-remittance-malaysia/e-wallets-digital-payment-malaysia-saturated/

  • Ramos-de-Luna, I., Montoro-Ríos, F., & Liébana-Cabanillas, F. (2016). Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Information Systems and e-Business Management, 14(2), 293-314. https://doi.org/10.1007/s10257-015-0284-5

  • Ringle, C., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865-1886. https://doi.org/10.1108/IMDS-10-2015-0449

  • Rashed, A., Santos, H., & Aleryani, A. Y. (2014). Determinants of behavioral intention to mobile banking: Case from Yemen. MMEDIA 2013: The Fifth International Conferences on Advances in Multimedia, 96-99.

  • Rogers, E. M. (1995). Diffusion of innovations. Free Press.

  • Rondan-Cataluña, F. J., Arenas-Gaitán, J., & Ramírez-Correa, P. E. (2015). A comparison of the different versions of popular technology acceptance models: A non-linear perspective. Kybernetes, 44(5), 788-805. https://doi.org/10.1108/K-09-2014-0184

  • Sen, A. (2019, February 11). Malaysia’s overpopulated e-wallet landscape: Deep pockets not enough. The Low Down. https://thelowdown.momentum.asia/malaysias-overpopulated-e-wallet-landscape-deep-pockets-not-enough/

  • Shaw, N. (2015). The mediating role of perceived security: An empirical study of mobile wallet adoption in USA. In International Conference on HCI in Business (pp. 358-369). Springer, Cham.

  • Shin, D. H. (2010). Modeling the interaction of users and mobile payment system: Conceptual framework. International Journal of Human Computer Interaction, 26(10), 917-940.

  • Singh, N., & Sinha, N. (2020). How perceived trust mediates merchant’s intention to use a mobile wallet technology. Journal of Retailing and Consumer Services, 52, 101894. https://doi.org/10.1016/j.jretconser.2019.101894

  • Sorensen, E. (2018, May 31). Different types of mobile payments explained. Mobile Transaction. https://www.mobiletransaction.org/different-types-of-mobile-payments/

  • Surendran, P. (2012). Technology acceptance model: A survey of literature. International Journal of Business and Social Research, 2(4), 175-178. https://doi.org/10.18533/ijbsr.v2i4.161

  • Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960-967. https://doi.org/10.1016/j.promfg.2018.03.137

  • Tan, J. (2018, September 4). Malaysia and Singapore among Top 10 Alipay overseas spending markets. Marketing-Interactive. https://www.marketing-interactive.com/malaysia-and-singapore-among-top-10-alipay-overseas-spending-markets/

  • Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872

  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.

  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

  • Wang, G., Putri, N. M., Christianto, A., & Hutama, D. (2019). An empirical examination of characteristics of mobile payment users in Indonesia. Journal of Theoretical and Applied Information Technology, 97(1), 169-182.

  • Wang, Z., & Dong, X. (2016). Determinants and policy implications of residents’ new energy vehicle purchases: The evidence from China. Natural Hazards, 82(1), 155-173. https://doi.org/10.1007/s11069-016-2185-4

  • Yan, H., & Yang, Z. (2015). Examining mobile payment user adoption from the perspective of trust. International Journal of u- and e-Service, Science and Technology, 8(1), 117-130.

  • Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142. https://doi.org/10.1016/j.chb.2011.08.019

  • Zainab, B., Bhatti, M. A., & Alshagawi, M. (2017). Factors affecting e-training adoption: An examination of perceived cost, computer self-efficacy and the technology acceptance model. Behaviour & Information Technology, 36(12), 1261-1273. https://doi.org/10.1080/0144929X.2017.1380703

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles