e-ISSN 2231-8534
ISSN 0128-7702
J
Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abu-issa, A., Nawawreh, H., Shreteh, L., Salman, Y., Hassouneh, Y., Tumar, I., & Systems, A. R. (2020). A smart city mobile application for multitype, proactive, and context-aware recommender system. In 2017 International Conference on Engineering and Technology (ICET) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/ICEngTechnol.2017.8308181
Aggarwal, C. C. (2016). Recommender systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3
Amato, F., Mazzeo, A., Moscato, V., & Picariello, A. (2013). A Recommendation System for Browsing of Multimedia Collections in the Internet. In Internet of things and inter-cooperative computational technologies for collective intelligence (pp. 391-411). Springer. https://doi.org/10.1007/978-3-642-34952-2_16
Anthony Jnr, B. (2020). A case-based reasoning recommender system for sustainable smart city development. AI & Society, 36, 159-183. https://doi.org/10.1007/s00146-020-00984-2
Baltrunas, L., Ludwig, B., & Ricci, F. (2011). Matrix factorization techniques for context aware recommendation. In Proceedings of the fifth ACM conference on Recommender systems (pp. 301-304). Association for Computing Machinery. https://doi.org/10.1145/2043932.2043988
Barbin, J. P., Yousefi, S., & Masoumi, B. (2020). Efficient service recommendation using ensemble learning in the Internet of things (IoT). Journal of Ambient Intelligence and Humanized Computing, 11(3), 1339-1350. https://doi.org/10.1007/s12652-019-01451-7
Cao, B., Liu, J., Wen, Y., Li, H., Xiao, Q., & Chen, J. (2019). QoS-aware service recommendation based on relational topic model and factorization machines for IoT Mashup applications. Journal of Parallel and Distributed Computing, 132, 177-189. https://doi.org/10.1016/j.jpdc.2018.04.002
Cha, S., Ruiz, M. P., Wachowicz, M., Tran, L. H., Cao, H., & Maduako, I. (2017). The role of an IoT platform in the design of real-time recommender systems. In 2016 IEEE 3rd world forum on Internet of things (WF-iot) (pp. 448-453). IEEE Publishing. https://doi.org/10.1109/WF-IoT.2016.7845469
Chaudhari, S., Azaria, A., & Mitchell, T. (2017). An entity graph based Recommender System. AI Communications, 30(2), 141-149. https://doi.org/10.3233/AIC-170728
Chirila, S., Lemnaru, C., & Dinsoreanu, M. (2016). Semantic-based IoT device discovery and recommendation mechanism. In 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 111-116). IEEE Publishing. https://doi.org/10.1109/ICCP.2016.7737131
Choi, S. M., Lee, H., Han, Y. S., Man, K. L., & Chong, W. K. (2015). A Recommendation Model Using the Bandwagon Effect for E-Marketing Purposes in IoT. International Journal of Distributed Sensor Networks, 11(7), Article 475163. https://doi.org/10.1155/2015/475163
Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17-39. https://doi.org/10.1016/j.comnet.2018.07.017
Di Martino, S., & Rossi, S. (2016). An architecture for a mobility recommender system in smart cities. Procedia Computer Science, 58, 425-430. https://doi.org/10.1016/j.procs.2016.09.066
Elmisery, A. M., Rho, S., & Sertovic, M. (2017). Privacy aware group based recommender system in multimedia services. Multimedia Tools and Applications, 76(24), 26103-26127. https://doi.org/10.1007/s11042-017-4950-0
Erdeniz, S. P., Menychtas, A., Maglogiannis, I., Felfernig, A., & Tran, T. N. T. (2019). Recommender systems for IoT enabled quantified-self applications. Evolving Systems, 11(2), 291-304. https://doi.org/10.1007/s12530-019-09302-8
Felfernig, A., Erdeniz, S. P., Jeran, M., Akcay, A., Azzoni, P., Maiero, M., & Doukas, C. (2017). Recommendation technologies for IoT edge devices. Procedia Computer Science, 110, 504-509. https://doi.org/10.1016/j.procs.2017.06.135
Felfernig, A., Polat-Erdeniz, S., Uran, C., Reiterer, S., Atas, M., Tran, T. N. T., Azzoni, P., Kiraly, C., & Dolui, K. (2019). An overview of recommender systems in the Internet of things. Journal of Intelligent Information Systems, 52(2), 285-309. https://doi.org/10.1007/s10844-018-0530-7
Forestiero, A. (2017). Multi-Agent recommendation system in Internet of things. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (pp. 772-775). IEEE Publishing. https://doi.org/10.1109/CCGRID.2017.123
Forouzandeh, S., Aghdam, A. R., Barkhordari, M., & Fahimi, A. (2017). Recommender system for users of Internet of Things (IOT). International Journal of Computer Science and Network Security, 17(8), 46-51.
Franco, D. A. I. (2017). A recommender system for automation rules in the Internet of Things (MSc Thesis). Instituto Superior Técnico, Portugal.
Frey, R. M., Xu, R., & Ilic, A. (2015). A Novel Recommender System in IoT. In 2015 5th International Conference on the Internet of Things (IOT 2015). IEEE Publishing. https://doi.org/10.3929/ethz-a-010561395
Gladence, L. M., Anu, V. M., Rathna, R., & Brumancia, E. (2020). Recommender system for home automation using IoT and artificial intelligence. Journal of Ambient Intelligence and Humanized Computing, 1-9. https://doi.org/10.1007/s12652-020-01968-2
Guo, Z., & Wang, H. (2020). A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 3203(c), 1-1. https://doi.org/10.1109/tii.2020.2986316
HamlAbadi, K. G., Saghiri, A. M., Vahdati, M., TakhtFooladi, M. D., & Meybodi, M. R. (2018). A framework for cognitive recommender systems in the Internet of Things (IoT). In 2017 IEEE 4th international conference on knowledge-based engineering and innovation (KBEI) (pp. 0971-0976). IEEE Publishing. https://doi.org/10.1109/KBEI.2017.8324939
Huang, Z., Xu, X., Ni, J., Zhu, H., & Wang, C. (2019). Multimodal representation learning for recommendation in Internet of Things. IEEE Internet of Things Journal, 6(6), 10675-10685. https://doi.org/10.1109/JIOT.2019.2940709
Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261-273. https://doi.org/10.1016/j.eij.2015.06.005
Iwendi, C., Khan, S., Anajemba, J. H., Bashir, A. K., & Noor, F. (2020). Realizing an efficient IoMT-assisted patient diet recommendation system through machine learning model. IEEE Access, 8, 28462-28474. https://doi.org/10.1109/ACCESS.2020.2968537
Jabeen, F., Maqsood, M., Ghazanfar, M. A., Aadil, F., Khan, S., Khan, M. F., & Mehmood, I. (2019). An IoT based efficient hybrid recommender system for cardiovascular disease. Peer-to-Peer Networking and Applications, 12(5), 1263-1276. https://doi.org/10.1007/s12083-019-00733-3
Kang, D., Choi, H., Choi, S., & Rhee, W. (2017). SRS : Social Correlation Group based Recommender System for Social IoT Environment. International Journal of Contents, 13(1), 53-61. https://doi.org/10.5392/IJoC.2017.13.1.053
Kang, D., Choi, H., & Rhee, W. (2016). Social Correlation Group Generation Mechanism in Social IoT Environment. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 514-519). IEEE Publishing. https://doi.org/10.1109/ICUFN.2016.7537086
Kolbe, N., Kubler, S., Robert, J., Le Traon, Y., & Zaslavsky, A. (2019). Linked vocabulary recommendation tools for Internet of things: A survey. ACM Computing Surveys, 51(6), 1-31. https://doi.org/10.1145/3284316
Kwon, J., & Kim, S. (2016). Study on Recommendation in Internet of Things Environment. In 2015 7th International Conference on Multimedia, Computer Graphics and Broadcasting (MulGraB) (pp. 13-14). IEEE Publishing. https://doi.org/10.1109/MulGraB.2015.13
Lee, J. S., & Ko, I. Y. (2016). Service recommendation for user groups in Internet of things environments using member organization-based group similarity measures. In 2016 IEEE international conference on web services (ICWS) (pp. 276-283). IEEE Publishing. https://doi.org/10.1109/ICWS.2016.43
Lee, K., Lee, Y. S., & Nam, Y. (2019). A novel approach of making better recommendations by revealing hidden desires and information curation for users of Internet of things. Multimedia Tools and Applications, 78(3), 3183-3201. https://doi.org/10.1007/s11042-018-6084-4
Lee, K., & Lee, K. (2015). Escaping your comfort zone: A graph-based recommender system for finding novel recommendations among relevant items. Expert Systems with Applications, 42(10), 4851-4858. https://doi.org/10.1016/j.eswa.2014.07.024
Mashal, I., Alsaryrah, O., & Chung, T. Y. (2016). Analysis of recommendation algorithms for Internet of Things. In 2016 IEEE Wireless Communications and Networking Conference (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/WCNC.2016.7564667
Mashal, I., Alsaryrah, O., Chung, T. Y., & Yuan, F. C. (2020). A multi-criteria analysis for an Internet of things application recommendation system. Technology in Society, 60, Article 101216. https://doi.org/10.1016/j.techsoc.2019.101216
Mashal, I., Chung, T. Y., & Alsaryrah, O. (2015). Toward service recommendation in Internet of Things. In 2015 Seventh International Conference on Ubiquitous and Future Networks (pp. 328-331). IEEE Publishing. https://doi.org/10.1109/ICUFN.2015.7182559
Matsui, K., & Choi, H. (2017). A recommendation system with secondary usage of HEMS data for products based on IoT technology. In 2017 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/ISNCC.2017.8071982
Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender systems and their ethical challenges. AI & Society, 35(4), 957-967. https://doi.org/10.1007/s00146-020-00950-y
Mohammadi, V., Rahmani, A. M., Darwesh, A. M., & Sahafi, A. (2019). Trust-based recommendation systems in Internet of Things: a systematic literature review. Human-centric Computing and Information Sciences, 9(1), 1-61. https://doi.org/10.1186/s13673-019-0183-8
Muñoz-Organero, M., Ramíez-González, G. A., Muñoz-Merino, P. J., & Delgado Kloos, C. (2010). A collaborative recommender system based on space-time similarities. IEEE Pervasive Computing, 9(3), 81-87. https://doi.org/10.1109/MPRV.2010.56
Musto, C., Lops, P., Basile, P., de Gemmis, M., & Semeraro, G. (2016). Semantics-aware graph-based recommender systems exploiting linked open data. In Proceedings of the 2016 conference on user modeling adaptation and personalization (pp. 229-237). Association for Computing Machinery. https://doi.org/10.1145/2930238.2930249
Nizamkari, N. S. (2017). A graph-based trust-enhanced recommender system for service selection in IOT. In 2017 International Conference on Inventive Systems and Control (ICISC) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/ICISC.2017.8068714
Noirie, L., Le Pallec, M., & Ammar, N. (2017). Towards automated IoT service recommendation. In 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN) (pp. 103-106). IEEE Publishing. https://doi.org/10.1109/ICIN.2017.7899397
Ouhbi, B., Frikh, B., Zemmouri, E., & Abbad, A. (2018). Deep learning based recommender system. In 2018 IEEE 5th International Congress on Information Science and Technology (CiSt) (pp. 161-166). https://doi.org/10.1109/CIST.2018.8596492
Palaiokrassas, G., Karlis, I., Litke, A., Charlaftis, V., & Varvarigou, T. (2017). An IoT architecture for personalized recommendations over big data oriented applications. In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) (Vol. 2, pp. 475-480). IEEE Publishing. https://doi.org/10.1109/COMPSAC.2017.59
Pratibha, & Kaur, P. D. (2018). Towards incorporating context awareness to recommender systems in Internet of things. Smart Innovation, Systems and Technologies, 79, 771-780. https://doi.org/10.1007/978-981-10-5828-8_73
Ravi, L., Vairavasundaram, S., Palani, S., & Devarajan, M. (2019). Location-based personalized recommender system in the Internet of cultural things. Journal of Intelligent & Fuzzy Systems, 36(5), 4141-4152. https://doi.org/10.3233/JIFS-169973
Roopa, M. S., Pattar, S., Buyya, R., Venugopal, K. R., Iyengar, S. S., & Patnaik, L. M. (2019). Social Internet of Things (SIoT): Foundations, thrust areas, systematic review and future directions. Computer Communications, 139(September 2018), 32-57. https://doi.org/10.1016/j.comcom.2019.03.009
Sawant, S. D., Sonawane, K. V., Jagani, T., & Chaudhari, A. N. (2017). Representation of recommender system in IoT using cyber physical techniques. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 2, pp. 372-375). IEEE Publishing. https://doi.org/10.1109/ICECA.2017.8212836
Saghiri, A. M., Vahdati, M., Gholizadeh, K., Meybodi, M. R., Dehghan, M., & Rashidi, H. (2018). A framework for cognitive Internet of Things based on blockchain. In 2018 4th International Conference on Web Research (ICWR) (pp. 138-143). IEEE Publishing. https://doi.org/10.1109/ICWR.2018.8387250
Saleem, Y., Crespi, N., Rehmani, M. H., Copeland, R., Hussein, D., & Bertin, E. (2017). Exploitation of social IoT for recommendation services. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (pp. 359-364). IEEE Publishing. https://doi.org/10.1109/WF-IoT.2016.7845500
Salman, Y., Abu-Issa, A., Tumar, I., & Hassouneh, Y. (2015). A proactive multi-type context-aware recommender system in the environment of Internet of Things. In 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (pp. 351-355). IEEE Publishing. https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.50
Selvan, N. S., Vairavasundaram, S., & Ravi, L. (2019). Fuzzy ontology-based personalized recommendation for Internet of medical things with linked open data. Journal of Intelligent and Fuzzy Systems, 36(5), 4065-4075. https://doi.org/10.3233/JIFS-169967
Sewak, M., & Singh, S. (2016). IoT and distributed machine learning powered optimal state recommender solution. In 2016 International Conference on Internet of Things and Applications (IOTA) (pp. 101-106). IEEE Publishing. https://doi.org/10.1109/IOTA.2016.7562703
Shang, S., Hui, Y., Hui, P., Cuff, P., & Kulkarni, S. (2014). Beyond personalization and anonymity: Towards a group-based recommender system. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (pp. 266-273). https://doi.org/10.1145/2554850.2554924
Subramaniyaswamy, V., Manogaran, G., Logesh, R., Vijayakumar, V., Chilamkurti, N., Malathi, D., & Senthilselvan, N. (2019). An ontology-driven personalized food recommendation in IoT-based healthcare system. Journal of Supercomputing, 75(6), 3184-3216. https://doi.org/10.1007/s11227-018-2331-8
Tarus, J. K., Niu, Z., & Mustafa, G. (2017). Knowledge-based recommendation: A review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21-48. https://doi.org/10.1007/s10462-017-9539-5
Twardowski, B., & Ryzko, D. (2016). IoT and context-aware mobile recommendations using Multi-Agent Systems. In 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (Vol. 1, pp. 33-40). IEEE Publishing. https://doi.org/10.1109/WI-IAT.2015.120
Wang, X., Su, L., Zhou, Q., & Wu, L. (2020). Group recommender systems based on members’ preference for trusted social networks. Security and Communication Networks, 2020, Article 1924140. https://doi.org/10.1155/2020/1924140
Wu, X. Q., Zhang, L., Tian, S. L., & Wu, L. (2019). Scenario based e-commerce recommendation algorithm based on customer interest in Internet of things environment. Electronic Commerce Research, 1-17. https://doi.org/10.1007/s10660-019-09339-6
Yan, B., Yu, J., Yang, M., Jiang, H., Wan, Z., & Ni, L. (2019). A novel distributed social Internet of Things service recommendation scheme based on LSH forest. Personal and Ubiquitous Computing, 1-14. https://doi.org/10.1007/s00779-019-01283-4
Yao, L., Sheng, Q. Z., Ngu, A. H., & Li, X. (2016). Things of interest recommendation by leveraging heterogeneous relations in the Internet of things. ACM Transactions on Internet Technology, 16(2), 1-25. https://doi.org/10.1145/2837024
Yao, L., Wang, X., Sheng, Q. Z., Dustdar, S., & Zhang, S. (2019). Recommendations on the Internet of Things: Requirements, challenges, and directions. IEEE Internet Computing, 23(3), 46-54. https://doi.org/10.1109/MIC.2019.2909607
Yavari, A., Jayaraman, P. P., & Georgakopoulos, D. (2016). Contextualised service delivery in the Internet of things: Parking recommender for smart cities. In 2016 IEEE 3Rd world forum on Internet of things (WF-iot) (pp. 454-459). IEEE Publishing. https://doi.org/10.1109/WF-IoT.2016.7845479
Yuan, W., Guan, D., Shu, L., & Niu, J. (2013). Mehanizampretraživanja preporučcitelja za sustave sigurnih preporučcitelja u Internetu stvari [Recommender searching mechanism for trust-aware recommender systems in Internet of things]. Automatika, 54(4), 427-437. https://doi.org/10.7305/automatika.54-4.416
Zia, K., Muhammad, A., Saini, D. K., & Ferscha, A. (2018). Agent-based model of smart social networking-driven recommendations system for Internet of vehicles. In International Conference on Practical Applications of Agents and Multi-Agent Systems (pp. 275-287). Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles