Home / Regular Issue / JSSH Vol. 31 (5) Aug. 2023 / JST-3919-2022

 

Reactivity Enhancement of Lignin Extracted from Preconditioning Refiner Chemical-Recycle Bleached Mechanized Pulp (PRC-RBMP) Black Liquor by Phenolation

Lim Kah Yen, Tengku Arisyah Tengku Yasim-Anuar, Farhana Aziz Ujang, Hazwani Husin, Hidayah Ariffin, Paridah Md Tahir, Li Xin Ping and Mohd Termizi Yusof

Pertanika Journal of Social Science and Humanities, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.28

Keywords: Adhesive, black liquor, lignin, modification, phenolation, phenol-formaldehyde resin, pulp and paper, sustainability

Published on: 31 July 2023

Despite black liquor’s (BL) renown as a difficult-to-manage contaminant in the pulp and paper industry, BL has been found as a viable alternative material for adhesive formulation due to its high lignin content. Nevertheless, modification is required to enhance lignin’s reactivity, and there is currently a lack of study focusing on this aspect for BL-lignin. This study aims to increase the phenolic hydroxyl content of BL-lignin by phenolation. After being phenolated at lignin to phenol ratio of 1:1, at a temperature of 100°C for 110 minutes, and with the addition of 8% sulfuric acid (H2SO4) as a catalyst, the phenolic hydroxyl content improved by 51.5%. The results of Fourier transform infrared spectroscopy (FTIR), UV/Vis spectrophotometry, proton nuclear magnetic resonance (1H-NMR), thermogravimetry-differential scanning calorimetry (TG-DSC), and its differential curve showed that the structural change in phenolated lignin opened up more active sites, implying that this lignin could be a good substitute for phenol in phenol-formaldehyde resin manufacturing.

  • Abdelwahab, N. A., & Nassar, M. A. (2011). Preparation , optimisation and characterisation of lignin phenol formaldehyde resin as wood adhesive. Pigment & Resin Technology, 40(3), 169-174. https://doi.org/10.1108/03699421111130432

  • Ahmadzadeh, A., Zakaria, S., & Rashid, R. (2009). Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin. Industrial Crops and Products, 30(1), 54-58. https://doi.org/10.1016/j.indcrop.2009.01.005

  • Alonso, M. V., Oliet, M., Rodriguez, F., Gilarranz, M. A., & Rodriguez, J. J. (2005). Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 96(9), 1013-1018. https://doi.org/10.1016/j.biortech.2004.09.009

  • Chung, H., & Washburn, N. R. (2012). Improved lignin polyurethane properties with lewis acid treatment. American Chemical Society Applied Materials & Interfaces, 4, 2840-2846. https://doi.org/10.1021/am300425x

  • Funaoka, M., Matsubara, M., Seki, N., & Fukatsu, S. (1995). Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics. Biotechnology and Bioengineering, 46, 545-552. https://doi.org/10.1002/bit.260460607

  • Gan, L., & Pan, X. (2019). Phenol-Enhanced Depolymerization and Activation of Kraft Lignin in Alkaline Medium. Industrial & Engineering Chemistry Research, 58(19), 7794-7800. https://doi.org/10.1021/acs.iecr.9b01147

  • Gao, C., Li, M., Zhu, C., Hu, Y., Shen, T., Li, M., Ji, X., Lyu, G., & Zhuang, W. (2021). One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Composites Part B: Engineering, 205, Article 108530. https://doi.org/10.1016/j.compositesb.2020.108530

  • Garrigues, S. (2019). Paints | organic solvent-based. In P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (3rd ed.) (pp. 110-120). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14227-1

  • Gerassimidou, S., Velis, C. A., Williams, P. T., & Komilis, D. (2020). Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review. Waste Management and Research, 38(9), 942-965. https://doi.org/10.1177/0734242X20941085

  • Ghaffar, S. H., & Fan, M. (2013). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57, 264-279. https://doi.org/10.1016/j.biombioe.2013.07.015

  • Ház, A., Jablonský, M., Šurina, I., Kačík, F., Bubeníková, T., & Ďurkovič, J. (2019). Chemical composition and thermal behavior of kraft lignins. Forests, 10(6), Article 483. https://doi.org/10.3390/F10060483

  • Hidayati, S., Satyajaya, W., & Fudholi, A. (2020). Lignin isolation from black liquor from oil palm empty fruit bunch using acid. Journal of Materials Research and Technology, 9(5), 11382-11391. https://doi.org/10.1016/j.jmrt.2020.08.023

  • Hu, L., Pan, H., Zhou, Y., & Zhang, M. (2011). Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources, 6(3), 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3525

  • Hussin, M. H., Aziz, A. A., Iqbal, A., Ibrahim, M. N. M., & Latif, N. H. A. (2019). Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal. International Journal of Biological Macromolecules, 122, 713-722. https://doi.org/10.1016/j.ijbiomac.2018.11.009

  • Hussin, M. H., Samad, N. A., Latif, N. H. A., Rozuli, N. A., Yusoff, S. B., Gambier, F., & Brosse, N. (2018). Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. International Journal of Biological Macromolecules, 113, 1266-1272. https://doi.org/10.1016/j.ijbiomac.2018.03.048

  • Ibrahim, M. N. M., Zakaria, N., Sipaut, C. S., Sulaiman, O., & Hashim, R. (2011). Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydrate Polymers, 86(1), 112-119. https://doi.org/10.1016/j.carbpol.2011.04.018

  • Ibrahim, V., Mamo, G., Gustafsson, P. J., & Hatti-Kaul, R. (2013). Production and properties of adhesives formulated from laccase modified Kraft lignin. Industrial Crops and Products, 45, 343-348. https://doi.org/10.1016/j.indcrop.2012.12.051

  • Inwood, J. P.W., Pakzad, L., & Fatehi, P. (2018). Production of sulfur containing kraft lignin products. BioResources, 13(1), 53-70. https://doi.org/10.15376/biores.13.1.53-70

  • Inwood, J. P. W. (2014). Sulfonation of kraft lignin to water soluble value added products [Doctoral thesis, Lakehead University]. Lakehead University. https://knowledgecommons.lakeheadu.ca/bitstream/2453/573/1/InwoodJ2014m-1a.pdf

  • Jiang, X., Liu, J., Du, X., Hu, Z., Chang, H.-M., & Jameel, H. (2018). Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chemistry & Engineering, 6(4), 5504-5512. https://doi.org/10.1021/acssuschemeng.8b00369

  • Jin, Y., Cheng, X., & Zheng, Z. (2010). Preparation and characterization of phenol - formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresource Technology, 101(6), 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085

  • Kazzaz, A. E., Feizi, Z. H., & Fatehi, P. (2019). Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 21, 5714-5752. https://doi.org/10.1039/c9gc02598g

  • Lai, Y., Zhang, Z., Huang, G., & Chi, C. (2007). Determination of the content of phenolic hydroxyl groups in lignin and pulp with fc-method. Transactions of China Pulp and Paper, 22(1), 54-58. https://doi.org/10.3321/j.issn:1000-6842.2007.01.014

  • Laurichesse, S., & Avérous, L. (2014). Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 39(7), 1266-1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

  • Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10, 39-48. https://doi.org/10.1023/A:1021070006895

  • Luo, B., Jia, Z., Jiang, H., Wang, S., & Min, D. (2020). Improving the reactivity of sugarcane bagasse kraft lignin by a combination of fractionation and phenolation for phenol - formaldehyde adhesive applications. Polymer, 12(8), Article 1825. https://doi.org/10.3390/polym12081825

  • Ma, X., Dai, B., & Yang, X. H. (2007). Recovery of lignin from reed black liquor of paper-making by acidulation method. Technology and Development of Chemical Industry, 36(8), 44-46.

  • Makulski, W., & Jackowski, K. (2020). 1H, 13C and 29Si magnetic shielding in gaseous and liquid tetramethylsilane. Journal of Magnetic Resonance, 313, Article 106716. https://doi.org/10.1016/j.jmr.2020.106716

  • Mansouri, N.-E. E., & Salvadó, J. (2006). Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products, 24(1), 8-16. https://doi.org/10.1016/j.indcrop.2005.10.002

  • Pang, B., Yang, S., Fang, W., Yuan, T.-Q., Argyropoulos, D. S., & Sun, R.-C. (2017). Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Industrial Crops & Products, 108, 316-326. https://doi.org/10.1016/j.indcrop.2017.07.009

  • Podschun, J., Saake, B., & Lehnen, R. (2015). Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets. European Polymer Journal, 67, 1-11. https://doi.org/10.1016/j.eurpolymj.2015.03.029

  • Podschun, J., Stucker, A., Saake, B., & Lehnen, R. (2015). Structure − Function relationships in the phenolation of lignins from different sources. ACS Sustainable Chemistry & Engineering, 3(10), 2526-2532. https://doi.org/10.1021/acssuschemeng.5b00705

  • Pretsch, E., Bühlmann, P., & Badertscher, M. (2020). Structure Determination of Organic Compounds. Springer. https://doi.org/10.1007/978-3-662-62439-5

  • Qiao, W., Li, S., & Xu, F. (2016). Preparation and characterization of a phenol-formaldehyde resin adhesive obtained from bio-ethanol production residue. Polymers and Polymer Composites, 24(2), 99-105. https://doi.org/10.1177/096739111602400203

  • Rashid, T., Kait, C. F., & Murugesan, T. (2016). A “Fourier Transformed Infrared” compound study of lignin recovered from a formic acid process. Procedia Engineering, 148, 1312-1319. https://doi.org/10.1016/j.proeng.2016.06.547

  • Sammons, R. J., Harper, D. P., Labbé, N., Bozell, J. J., Elder, T., & Rials, T. G. (2013). Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources, 8(2), 2752-2767.

  • Skulcova, A., Majova, V., Kohutova, M., Grosik, M., Sima, J., & Jablonsky, M. (2017). UV/Vis Spectrometry as a quantification tool for lignin solubilized in deep eutectic solvents. BioResources, 12(3), 6713-6722. https://doi.org/10.15376/biores.12.3.6713-6722

  • Taleb, F., Ammar, M., Mosbah, M. B., Salem, R. B., & Moussaoui, Y. (2020). Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Scientific Reports, 10, Article 11048. https://doi.org/10.1038/s41598-020-68047-6

  • Thébault, M., Kutuzova, L., Jury, S., Eicher, I., Zikulnig-Rusch, E. M., & Kandelbauer, A. (2020). Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: Molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles. Journal of Renewable Materials, 8(6), 603-630. https://doi.org/10.32604/jrm.2020.09616

  • Wang, M., Sjöholm, E., & Li, J. (2017). Fast and reliable quantification of lignin reactivity via reaction with dimethylamine and formaldehyde (Mannich reaction). Holzforschung, 71(1), 27-34. https://doi.org/10.1515/hf-2016-0054

  • Wang, Y., Liu, W., Zhang, L., & Hou, Q. (2019). Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. International Journal of Biological Macromolecules, 134, 20-27. https://doi.org/10.1016/j.ijbiomac.2019.05.013

  • Yang, C. Y., & Fang, T. J. (2014). Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Bioresource Technology, 164, 198-202. https://doi.org/10.1016/j.biortech.2014.05.004

  • Yang, S., Wen, J. L., Yuan, T. Q., & Sun, R. C. (2014). Characterization and phenolation of biorefinery technical lignins for lignin-phenol-formaldehyde resin adhesive synthesis. RSC Advances, 4(101), 57996-58004. https://doi.org/10.1039/c4ra09595b

  • Zhang, F., Jiang, X., Lin, J., Zhao, G., Chang, H.-M, & Jameel, H. (2019). Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New Journal of Chemistry, 43, 2238-2246. https://doi.org/10.1039/c8nj05016c

  • Zhang, H.-N., Ren, H., & Zhai, H.-M. (2021). Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Industrial Crops & Products, 167, Article 113506. https://doi.org/10.1016/j.indcrop.2021.113506

  • Zhang, H., Chen, T., Li, Y., Han, Y., Sun, Y., & Sun, G. (2020). Novel lignin-containing high-performance adhesive for extreme environment. International Journal of Biological Macromolecules, 164, 1832-1839. https://doi.org/10.1016/j.ijbiomac.2020.07.307

  • Zhang, Y., Li, N., Chen, Z., Ding, C., Zheng, Q., Xu, J., & Meng, Q. (2020). Synthesis of high-water-resistance lignin-phenol resin adhesive with furfural as a crosslinking agent. Polymers, 12(12), Article 2805. https://doi.org/10.3390/polym12122805

  • Zhang, Y., & Lei, Z.-F. (2010). Study on antioxidant activity of lignin from pulping black liquor. Journal of Fudan University (Natural Science), 49(1), 60-65.

  • Zhen, X., Li, H., Xu, Z., Wang, Q., Zhu, S., Wang, Z., & Yuan, Z. (2021). Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. International Journal of Biological Macromolecules, 182, 276-285. https://doi.org/10.1016/j.ijbiomac.2021.03.203

  • Zhu, W. (2013). Equilibrium of Lignin Precipitation: The Effects of pH, Temperature, Ion Strength and Wood Origins [Licentiate Thesis]. Chalmers University of Technology, Sweden. https://publications.lib.chalmers.se/records/fulltext/186940/186940.pdf

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-3919-2022

Download Full Article PDF

Share this article

Related Articles