Home / Regular Issue / JSSH Vol. 45 (4) Nov. 2022 / JTAS-2492-2022

 

Toxicity of Malaysian Medicinal Plant Extracts Against Sitophilus oryzae and Rhyzopertha dominica

Arshia Hematpoor, Sook Yee Liew, Hasmahzaiti Omar, Jamil Ahmad Shilpi, Azeana Zahari, Devi Rosmy Syamsir, Haslinda Mohd Salleh, Norsita Tohar, Rosalind Pei Theng Kim, Ahmad Kaleem Qureshi, Ayu Afiqah Nasrullah, Gomathi Chan, Soon Huat Tiong, Omer Abdalla Ahmed Hamdi, Muhammad Remy Othman, Sow Tein Leong, Khalijah Awang, Masdah Mawi and Norhayu Asib

Pertanika Journal of Social Science and Humanities, Volume 45, Issue 4, November 2022

DOI: https://doi.org/10.47836/pjtas.45.4.17

Keywords: Antifeedant, insecticidal activity, lesser grain borer, Malaysian medicinal plant, rice weevil

Published on: 4 November 2022

The insecticidal activities of extracts from 22 Malaysian medicinal plant extracts from 8 botanical families were tested against rice weevil: Sitophilus oryzae (L.) and lesser grain borer: Rhyzopertha dominica (F.). The extracts were obtained using hexane, methanol, and dichloromethane to extract potential biopesticides from dried leaves. The toxicity levels were examined periodically based on antifeedant activity and contact toxicity assays using treated grain assay. Hexane extracts of Alpinia conchigera, Alpinia scabra, Curcuma mangga, Curcuma purpurascens, Goniothalamus tapisoides, Piper sarmentosum , and methanol extracts of Curcuma aeruginosa, C. mangga , and Mitragyna speciosa were the most potent extracts against S. oryzae and R. dominica with lethal concentration (LC50) values of ≤ 0.42 mg/mL and ≤ 0.49 mg/mL, respectively. The contact toxicity test results showed that methanol extracts of C. aeruginosa and C. mangga , dichloromethane extracts of Cryptocarya nigra , and hexane extracts of C. mangga, and C. purpurascens resulted in 100% mortality of both pests within 28 days exposure of 5 mg/cm2 concentration.

  • Abas, F., Lajis, N. H., Shaari, K., Israf, D. A., Stanslas, J., Yusuf, U. K., & Raof, S. M. (2005). A labdane diterpene glucoside from the rhizomes of Curcuma mangga. Journal of Natural Products, 68(7), 1090–1093. https://doi.org/10.1021/np0500171

  • Abbott, W. S. (1987). A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Association, 3(2), 302–303. https://doi.org/10.1093/JEE%2F18.2.265A

  • Adeniyi, S., Orjiekwe, C., Ehiagbonare, J. E., & Arimah, B. D. (2010). Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (Vernonia amygdalina, Sida acuta, Ocimum gratissimum and Telfaria occidentalis) against beans weevil (Acanthscelides obtectus). International Journal of Physical Sciences, 5(6), 753–792.

  • Ahmad, F., Moharm, B. A., & Jantan, I. (2010). A comparative study of the constituents of the essential oils of Goniothalamus tapis Miq. and G. Tapisoides Mat Salleh from Borneo. Journal of Essential Oil Research, 22(6), 499-502. https://doi.org/10.1080/10412905.2010.9700382

  • Ahmed Hamdi, O. A., Syed Abdul Rahman, S. N., Awang, K., Abdul Wahab, N., Looi, C. Y., Thomas, N. F., & Abd Malek, S. N. (2014). Cytotoxic constituents from the rhizomes of Curcuma zedoaria. The Scientific World Journal, 2014, 321943. https://doi.org/10.1155/2014/321943

  • Ahn, Y. J., Lee, S. B., Lee, H. S., & Kim, G. H. (1998). Insecticidal and acaricidal activity of carvacrol and β-thujaplicine derived from Thujopsis dolabrata var. Hondai Sawdust. Journal of Chemical Ecology, 24, 81–90. https://doi.org/10.1023/A:1022388829078

  • Akhtar, Y., Yeoung, Y. R., & Isman, M. B. (2007). Comparative bioactivity of selected extracts from meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochemistry Reviews, 7, 77–88. https://doi.org/10.1007/s11101-006-9048-7

  • Amna, U., Hasnan, M. H. H., Ahmad, K., Ali, A., Awang, K., & Nafiah, M. (2015). In vitro cytotoxic of aporphine and proaporphine alkaloids from Phoebe grandis (Ness) Merr. International Journal of Pharmaceutical Sciences Review and Research, 32(1), 15-20.

  • Andrić, G., Kljajić, P., & Pražić-Golić, M. (2014). Residual efficacy of cypermethrin and pirimiphos-methyl against Sitophilus granarius (L.) And Plodia interpunctella (Hübner) on concrete surface. Journal of Pesticides and Phytomedicine, 29(4), 275-281. https://doi.org/10.2298/PIF1404275A

  • Anuradha, A., Rajan, K., & mcconnell, M. (2010). Feeding deterrence activity of Adhatoda vasica L. Against Spodoptera litura (Fab.). Journal of Biopesticides, 3(1), 286–288.

  • Arivoli, S., & Tennyson, S. (2013). Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies, 1(4), 87–96.

  • Athanassiou, C. G., Kavallieratos, N. G., Chiriloaie, A., Vassilakos, T. N., Fătu, V., Drosu, S., Ciobanu, M., & Dudoiu, R. (2016). Insecticidal efficacy of natural diatomaceous earth deposits from Greece and Romania against four stored grain beetles: The effect of temperature and relative humidity. Bulletin of Insectology, 69(1), 25–34.

  • Awang, K., Azmi, M. N., Aun, L. I., Aziz, A. N., Ibrahim, H., & Nagoor, N. H. (2010a). The apoptotic effect of 1’S-1’-acetoxychavicol acetate from Alpinia conchigera on human cancer cells. Molecules, 15(11), 8048–8059. https://doi.org/10.3390/molecules15118048

  • Awang, K., Chan, G., Litaudon, M., Ismail, N. H., Martin, M. T., & Gueritte, F. (2010b). 4-Phenylcoumarins from Mesua elegans with acetylcholinesterase inhibitory activity. Bioorganic and Medicinal Chemistry, 18(22), 7873–7877. https://doi.org/10.1016/j.bmc.2010.09.044

  • Awang, K., Ibrahim, H., Syamsir, R. D., Mohtar, M., Ali, R. M., & Ali, N. A. M. (2011). Chemical constituents and antimicrobial activity of the leaf and rhizome oils of Alpinia pahangensis Ridl., an endemic wild ginger from peninsular Malaysia. Chemistry and Biodiversity, 8(4), 668–673. https://doi.org/10.1002/cbdv.201000225

  • Aziz, A. N., Ibrahim, H., Syamsir, D. R., Mohtar, M., Vejayan, J., & Awang, K. (2013). Antimicrobial compounds from Alpinia conchigera. Journal of Ethnopharmacology, 145(3), 798–802. https://doi.org/10.1016/j.jep.2012.12.024

  • Aziz, S., Saha, K., Sultana, N., Nur, H. P., Ahsan, M. A., Ahmed, S., & Hossain, M. K. (2016). Comparative studies of elemental composition in leaves and flowers of Catharanthus roseus growing in Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 6(1), 50-54. https://doi.org/10.1016/j.apjtb.2015.10.003

  • Burkill, I. H. (1935). A dictionary of the economic products of the Malay peninsula. Crown Agents for the Colonies.

  • Chan, G., Kamarudin, M. N., Wong, D. Z., Ismail, N. H., Abdul Latif, F., Hasan, A., Awang, K., & Abdul Kadir, H. (2012). Mitigation of H2O2-induced mitochondrial-mediated apoptosis in NG108-15 cells by Novel mesuagenin C from Mesua kunstleri (King) Kosterm. Evidence-Based Complementary and Alternative Medicine, 2012, 156521. https://doi.org/10.1155/2012/156521

  • Chaubey, M. K. (2012a). Fumigant toxicity of essential oils and pure compounds against Sitophilus oryzae L. (Coleoptera: Curculionidae). Biological Agriculture and Horticulture, 28(2), 111–119. https://doi.org/10.1080/01448765.2012.681352

  • Chaubey, M. K. (2012b). Responses of Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae) against essential oils and pure compounds. Herba Polonica, 58(3), 33-45.

  • Dadang., Riyanto, S., & Ohsawa, K. (1998). Lethal and antifeedant substance from rhizome of Alpinia galanga Sw. (Zingiberaceae). Journal of Pesticide Science, 23(3), 304–307.

  • El-Masry, A. T. H. (2008). Studies on the control of stored product insects [Master’s thesis, Alexandria University] Alexandria University Research Repository. http://damanhour.edu.eg/pdf/agrfac/%D9%85%D8%A7%D8%AC%D8%B3%D8%AA%D9%8A%D8%B1%20%D8%B9%D8%A7%D8%B7%D9%81%20%D8%B7%D9%87%20%D8%A7%D9%84%D9%85%D8%B5%D8%B1%D9%89%20%D9%85%D9%83%D8%A7%D9%81%D8%AD%D8%A9%20%D8%A2%D9%81%D8%A7%D8%AA.pdf

  • El-Nahal, A. K. M., Schmidt, G. H., & Risha, E. M. (1989). Vapours of Acorus calamus oil —A space treatment for stored-product insects. Journal of Stored Products Research, 25(4), 211–216. https://doi.org/10.1016/0022-474X(89)90026-X

  • Ferizli, A., Beriş, G., & Emekçi, M. (2011). Effects of diatomaceous earth on the mortality and progeny production of Rhyzopertha dominica (Coleoptera: Bostrychidae). Journal of Agricultural Sciences, 17(2), 85-94.

  • Finney, D J. (1971). Probit analysis: A statistical treatment of the sigmoid response curve (7th ed.). Cambridge University Press.

  • Frazier, J. L. (1986). The perception of plant allelochemicals that inhibit feeding. In L. B. Brattsten & S. Ahmad (Eds.), Molecular aspects of insect-plant associations (pp. 1-42). Springer. https://doi.org/10.1007/978-1-4613-1865-1_1

  • Gill, H. K., & Garg, H. (2014). Pesticides: Environmental impacts and management strategies. In M. L. Larramendy & S. Soloneski (Eds.), Pesticides - Toxic aspects. Intechopen. https://doi.org/10.5772/57399

  • Hematpoor, A., Liew, S. Y., Chong, W. L., Azirun, M. S., Lee, V. S., & Awang, K. (2016). Inhibition and larvicidal activity of phenylpropanoids from Piper sarmentosum on acetylcholinesterase against mosquito vectors and their binding mode of interaction. PLOS One, 11(5), e0155265. https://doi.org/10.1371/journal.pone.0155265

  • Hematpoor, A., Liew, S. Y., Azirun, M. S., & Awang, K. (2017). Insecticidal activity and the mechanism of action of three phenylpropanoids isolated from the roots of Piper sarmentosum Roxb. Scientific Reports, 7, 12576. https://doi.org/10.1038/s41598-017-12898-z

  • Hematpoor, A., Paydar, M., Liew, S. Y., Sivasothy, Y., Mohebali, N., Looi, C. Y., Wong, W. F., Azirun, M. S., & Awang, K. (2018). Phenylpropanoids isolated from Piper sarmentosum Roxb. induce apoptosis in breast cancer cells through reactive oxygen species and mitochondrial-dependent pathways. Chemico-Biological Interactions, 279, 210–218. https://doi.org/10.1016/j.cbi.2017.11.014

  • Hong, S. L., Lee, G. S., Rahman, S. N. S. A., Hamdi, O. A. A., Awang, K., Nugroho, N. A., & Malek, S. N. A. (2014). Essential oil content of the rhizome of Curcuma purpurascens Bl. (Temu Tis) and its antiproliferative effect on selected human carcinoma cell lines. The Scientific World Journal, 2014, 397430. https://doi.org/10.1155/2014/397430

  • Ibrahim, H., Aziz, A., Syamsir, D. R., Ali, N. A., Mohtar, M. A., Ali, R. M., & Awang, K. (2009). Essential oils of Alpinia conchigera Griff. and their antimicrobial activities. Food Chemistry, 113(2), 575-577. https://doi.org/10.1016/j.foodchem.2008.08.033

  • Idayu, N. F., Hidayat, M. T., Moklas, M. A., Sharida, F., Raudzah, A. R., Shamima, A. R., & Apryani, E. (2011). Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression. Phytomedicine, 18(5), 402–407. https://doi.org/10.1016/j.phymed.2010.08.011

  • Iskandar, N. H., Yaacob, S. M., Mat Rashid, Z., Nawawi, N. A. A., & Ismail, I. S. (2021). Quantification and characterization of goniothalamin from Goniothalamus andersonii using HPLC. Bioscience Research, 18(S1-2), 104-114.

  • Jacobson, M. (1989). Botanical pesticides: Past, present, and future. In J. T. Arnason, B. J. R. Philogene, & P. Morand (Eds.), Insecticides of plant origin: ACS Symposium Series (pp. 1-10). American Chemical Society Publications. https://pubs.acs.org/doi/pdf/10.1021/bk-1989-0387.ch001

  • Joseph, B., Sowmya., & Sujatha, S. (2012). Insight of botanical based biopesticides against economically important pest. International Journal of Pharmacy and Life Sciences, 3(11), 2138-2148.

  • Kim, S.-I., Roh, J.-Y., Kim, D.-H., Lee, H.-S., & Ahn, Y.-J. (2003). Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. Journal of Stored Products Research, 39(3), 293–303. https://doi.org/10.1016/S0022-474X(02)00017-6

  • Kim, S.-I., Ahn, Y.-J., & Kwon, H.-W. (2012). Toxicity of aromatic plants and their constituents against coleopteran stored products insect pests. In A. R. Bandani (Ed.), New perspectives in plant protection. Intechopen. https://doi.org/10.5772/36288

  • Koller E. (2009). Javanese medical plants used in rural communities [Master’s thesis, University of Vienna]. University of Vienna Research Repository. http://othes.univie.ac.at/5503/

  • Leong, K. H., Mahdzir, M. A., Din, M. F., Awang, K., Tanaka, Y., Kulkeaw, K., Ishitani, T., & Sugiyama, D. (2017). Induction of intrinsic apoptosis in leukaemia stem cells and in vivo zebrafish model by betulonic acid isolated from Walsura pinnata Hassk (Meliaceae). Phytomedicine, 26, 11–21. https://doi.org/10.1016/j.phymed.2016.12.018

  • Liew, S. Y., Mukhtar, M. R., Hadi, A. H., Awang, K., Mustafa, M. R., Zaima, K., Morita, H., & Litaudon, M. (2012). Naucline, a new indole alkaloid from the bark of Nauclea officinalis. Molecules, 17(4), 4028–4036. https://doi.org/10.3390/molecules17044028

  • Liew, S. Y., Looi, C. Y., Paydar, M., Cheah, F. K., Leong, K. H., Wong, W. F., Mustafa, M. R., Litaudon, M., & Awang, K. (2014). Subditine, a new monoterpenoid indole alkaloid from bark of Nauclea subdita (Korth.) Steud. induces apoptosis in human prostate cancer cells. PLOS One, 9(2), e87286. https://doi.org/10.1371/journal.pone.0087286

  • Liew, S. Y., Khaw, K. Y., Murugaiyah, V., Looi, C. Y., Wong, Y. L., Mustafa, M. R., Litaudon, M., & Awang, K. (2015). Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. Phytomedicine, 22(1), 45–48. https://doi.org/10.1016/j.phymed.2014.11.003

  • Lobo, R., Prabhu, K. S., Shirwaikar, A., & Shirwaikar, A. (2009). Curcuma zedoaria Rosc. (white turmeric): A review of its chemical, pharmacological and ethnomedicinal properties. The Journal of Pharmacy and Pharmacology, 61(1), 13–21. https://doi.org/10.1211/jpp.61.01.0003

  • Macintyre, A. A. (1897). Why pesticides received extensive use in America: A political economy of agricultural pest management to 1970?. Natural Resources Journal, 27(3), 533–578.

  • Majeed, M., Mehmood, T., Javed, M., Sellami, F., Riaz, M. A., & Afzal, M. (2015). Biology and management of stored products’ insect pest Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae). International Journal of Biosciences, 7(5), 78–93.

  • Malek, S. N. A., Lee, G. S., Hong, S. L., Yaacob, H., Abdul Wahab, N. Faizal Weber, J. F., & Shah, S. A. A. (2011). Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules, 16(6), 4539–4548. https://doi.org/10.3390/molecules16064539

  • Mesterházy, A., Oláh, J., & Popp, J. (2020). Losses in the grain supply chain: Causes and solutions. Sustainability, 12(6), 2342. https://doi.org/10.3390/su12062342

  • Ministry of Natural Resources and Environment. (2006). Biodiversity in Malaysia. KeTSA. https://www.mybis.gov.my/pb/1623

  • Mohamad, K., Yusoff, M., Awang, K., Ahmad, K., & Ng, S. W. (2009). Pinnatane A from the bark of Walsura pinnata Hassk. Acta Crystallographica Section E: Crystallographic Communications, 65(6), o1317. https://doi.org/10.1107/S1600536809015955

  • Mousa, K., Muhamad, R., Omar, D., Mawardi, R., & Shamsali, R. (2011). Tropical medicinal plant extracts against rice weevil, Sitophilus oryzae L. Journal of Medicinal Plants Research, 5(2), 259-265.

  • Mukhtar, M. R., Martin, M. T., Domansky, M., Pais, M., Hadi, A. H. A., & Awang, K. (1997). Phoebegrandines A and B, proaporphine-tryptamine dimers, from Phoebe grandis. Phytochemistry, 45(7), 1543-1546. https://doi.org/10.1016/S0031-9422(97)00189-1

  • Naeem, M., Aftab, T., & Khan, M. M. A. (2017). Catharanthus roseus: Current research and future prospects. Springer. https://doi.org/10.1007/978-3-319-51620-2

  • Nasrullah, A. A., Zahari, A., Mohamad, J., & Awang, K. (2013). Antiplasmodial alkaloids from the bark of Cryptocarya nigra (Lauraceae). Molecules, 18(7), 8009–8017. https://doi.org/10.3390/molecules18078009

  • Nodin, M. N., Mustafa, Z., & Hussain, S. I. (2021). A conceptual framework of Malaysian rice post harvest losses management best practices adoption. Journal of Quality Measurement and Analysis, 17(2), 41-49.

  • Obeng-Ofori, D. (2010). Residual insecticides, inert dusts and botanicals for the protection of durable stored products against pest infestation in developing countries. Julius-Kühn-Archiv, 425, 774-788. https://doi.org/10.5073/jka.2010.425.141

  • Pan, L., Ren, L., Chen, F., Feng, Y., & Luo, Y. (2016). Antifeedant activity of Ginkgo biloba secondary metabolites against Hyphantria cunea larvae: Mechanisms and applications. PLOS One, 11(5), e0155682. https://doi.org/10.1371/journal.pone.0155682

  • Perry, L. M., & Metzger, J. (1980). Medicinal plants of East and Southeast Asia: Attributed properties and uses. MIT Press.

  • Phang, C. W., Malek, S. N., & Ibrahim, H. (2013). Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes. BMC Complementary and Alternative Medicine, 13, 243. https://doi.org/10.1186/1472-6882-13-243

  • Raja, P. B., Qureshi, A. K., Abdul Rahim, A., Awang, K., Mukhtar, M. R., & Osman, H. (2013). Indole alkaloids of Alstonia angustifolia var. Latifolia as green inhibitor for mild steel corrosion in 1 M HCL media. Journal of Materials Engineering and Performance, 22, 1072–1078. https://doi.org/10.1007/s11665-012-0347-4

  • Rajashekar, Y., & Shivanandappa, T. (2010). A novel natural insecticide molecule for grain protection. Julius-Kühn-Archiv, 425, 910–915. https://doi.org/10.5073/jka.2010.425.413

  • Rajendran, S., & Sriranjini, V. (2008). Plant products as fumigants for stored-product insect control. Journal of Stored Products Research, 44(2), 126–135. https://doi.org/10.1016/j.jspr.2007.08.003

  • Robertson, J. L., Russell, R. M., & Savin, N. E. (1980). POLO: A user’s guide to Probit Or LOgit analysis. United States Department of Agriculture. https://doi.org/10.2737/PSW-GTR-38

  • Saad, M., & Abdelgaleil, S. A. M. (2018). Effectiveness of monoterpenes and phenylpropenes on Sitophilus oryzae L. (Coleoptera: Curculionidae) in stored wheat. Journal of Asia-Pacific Entomology, 21(4), 1153–1158. https://doi.org/10.1016/j.aspen.2018.08.006

  • Sadeghi, R., & Ebadollahi, A. (2015). Susceptibility of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae) to spinosad (Tracer®) as an eco-friendly biopesticide. Ecologia Balkanica, 7(1), 39–44.

  • Salunke, B. K., Prakash, K., Vishwakarma, K. S., & Maheshwari, V. L. (2009). Plant metabolites: An alternative and sustainable approach towards post harvest pest management in pulses. Physiology and Molecular Biology of Plants, 15, 185. https://doi.org/10.1007/s12298-009-0023-9

  • SAS Institute. (1987). SAS/STAT guide for personal computers. SAS Institute.

  • Sawangjaroen, N., Sawangjaroen, K., & Poonpanang, P. (2004). Effects of Piper longum fruit, Piper sarmentosum root and Quercus infectoria nut gall on caecal amoebiasis in mice. Journal of Ethnopharmacology, 91(2-3), 357–360. https://doi.org/10.1016/j.jep.2004.01.014

  • Schoonhoven, L. M. (1982). Biological aspects of antifeedants. Entomologia Experimentalis et Applicata, 31(1), 57–69. https://doi.org/10.1111/j.1570-7458.1982.tb03119.x

  • Shaaya, E., Kostjukovski, M., Eilberg, J., & Sukprakarn, C. (1997). Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research, 33(1), 7–15. https://doi.org/10.1016/S0022-474X(96)00032-X

  • Sharma, S., Senrung, A., & Singh, A. (2014). Toxic effect of neem, Azadirachta indica (A. Juss) foliage extracts against diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera, Plutellidae). Journal of Biopesticides, 7, 99-105.

  • Sivapragasam, A. (2009). Biopesticides from Malaysian flora – Resources for sustainable pest management. In S. L. Tan (Ed.), Proceedings of the National Conference on New Crops and Bioresources, ‘Discovering Opportunities, Expanding the Economic Horizon’ (pp. 125–132). Malaysian Agricultural Research and Development Institute.

  • Sivasothy, Y., Ibrahim, H., Paliany, A. S., Alias, S. A., & Awang, K. (2013). Pahangensin A and B, two new antibacterial diterpenes from the rhizomes of Alpinia pahangensis Ridley. Bioorganic and Medicinal Chemistry Letters, 23(23), 6280–6285. https://doi.org/10.1016/j.bmcl.2013.09.082

  • Sok, S. P. M., Arshad, N. M., Azmi, M. N., Awang, K., Ozpolat, B., & Hasima N. N. (2017). The apoptotic effect of 1 ‘S-1’-acetoxychavicol acetate (ACA) enhanced by inhibition of non-canonical autophagy in human non-small cell lung cancer cells. PLOS One, 12(2), e0171329. https://doi.org/10.1371/journal.pone.0171329

  • Subramanyam, B., & David, W. H. (Eds.) (2020). Integrated management of insects in stored products. CRC Press.

  • Sukari, M. A., Sharif, N. W. M., Yap, A. L. C., Tang, S. W., Neoh, B. K., Rahmani, M., Ee, G. C. L., Yap, T. Y. H., & Yusof, U. K. (2008). Chemical constituents variations of essential oils from rhizomes of four Zingiberaceae species. The Malaysian Journal of Analytical Sciences, 12(3), 638-644.

  • Sun, W., Wang, S., Zhao, W., Wu, C., Guo, S., Gao, H., Tao, H., Lu, J., Wang, Y., & Chen, X. (2017). Chemical constituents and biological research on plants in the genus Curcuma. Critical Reviews in Food Science and Nutrition, 57(7), 1451-1523. https://doi.org/10.1080/10408398.2016.1176554

  • Talukder, F. (2009). Pesticide resistance in stored-product insects and alternative biorational management: A brief review. Journal of Agricultural and Marine Sciences, 14, 9-15. https://doi.org/10.24200/jams.vol14iss0pp9-15

  • Thaina, P., Tungcharoen, P., Wongnawa, M., Reanmongkol, W., & Subhadhirasakul, S. (2009). Uterine relaxant effects of Curcuma aeruginosa Roxb. rhizome extracts. Journal of Ethnopharmacology, 121(3), 433–443. https://doi.org/10.1016/j.jep.2008.10.022

  • Tiong, S. H., Looi, C. Y., Hazni, H., Arya, A., Paydar, M., Wong, W. F., Cheah, S. C., Mustafa, M. R., & Awang, K. (2013). Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 18(8), 9770–9784. https://doi.org/10.3390/molecules18089770

  • Tohar, N., Shilpi, J. A., Sivasothy, Y., Ahmad, S., & Awang, K. (2019). Chemical constituents and nitric oxide inhibitory activity of supercritical carbon dioxide extracts from Mitragyna speciosa leaves. Arabian Journal of Chemistry, 12(3), 350-359. https://doi.org/10.1016/j.arabjc.2016.09.005

  • Tripathi, A. K., Prajapati, V., Verma, N., Bahl, J. R., Bansal, R. P., Khanuja, S. P. S., & Kumar, S. (2002). Bioactivities of the leaf essential oil of Curcuma longa (var. Ch-66) on three species of stored-product beetles (Coleoptera). Journal of Economic Entomology, 95(1), 183–189. https://doi.org/10.1603/0022-0493-95.1.183

  • Tuntiwachwuttikul, P., Phansa, P., Pootaeng-on, Y., & Taylor, W. C. (2006). Chemical constituents of the roots of Piper sarmentosum. Chemical and Pharmaceutical Bulletin, 54(2), 149–151. https://doi.org/10.1248/cpb.54.149

  • World Health Organization. (1997). Vector control: Methods for use by individuals and communities. WHO. Https://www.who.int/publications/i/item/9241544945

  • Wilson, B., Abraham, G., Manju, V. S., Mathew, M., Vimala, B., Sundaresan, S., & Nambisan, B. (2005). Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. Journal of Ethnopharmacology, 99(1), 147–151. https://doi.org/10.1016/j.jep.2005.02.004

  • Wink, M. (1993). Production and application of phytochemicals from an agricultural perspective. In V. T. A. Beek & H. Breteler (Eds.), Phytochemistry and agriculture (Vol. 34, pp. 171-213). Clarendon Press.

  • Zahari, A., Cheah, F. K., Mohamad, J., Sulaiman, S. N., Litaudon, M., Leong, K. H., & Awang, K. (2014). Antiplasmodial and antioxidant isoquinoline alkaloids from Dehaasia longipedicellata. Planta Medica, 80(7), 599-603. https://doi.org/10.1055/s-0034-1368349

  • Zahari, A. (2016). Antiplasmodial and antioxidant alkaloids from two lauraceae species, Alseodaphne corneri and Dehaasia longipedicellata, and the acid dissociation constant of selected bioactive alkaloids [Doctoral dissertation, University of Malaya]. Malaysian Academic Library Institutional Repository. http://studentsrepo.um.edu.my/6456/4/azeana.pdf

  • Zoubiri, S., & Baaliouamer, A. (2014). Potentiality of plants as source of insecticide principles. Journal of Saudi Chemical Society, 18(6), 925–938. https://doi.org/10.1016/j.jscs.2011.11.015