e-ISSN 2231-8534
ISSN 0128-7702
Hao Yuan Chan, Yaya Rukayadi, Ezzat Mohamad Azman, Rozzamri Ashaari and Sarina Abdul Halim Lim
Pertanika Journal of Social Science and Humanities, Volume 47, Issue 2, May 2024
DOI: https://doi.org/10.47836/pjtas.47.2.04
Keywords: Antioxidant activities, caffeine, chlorogenic acid, Robusta coffee, spontaneous wet fermentation
Published on: 30 May 2024
Robusta coffee is one of Malaysia’s most planted species due to its ability to adapt to the local climate. Nonetheless, the coffee species was perceived as having lower quality and economic value due to bitterness and astringency. It is widely believed that higher caffeine and chlorogenic acid contents in Robusta coffee beans contributed to the unfavourable bitter and astringent flavour. Hence, the present study intends to evaluate the effect of spontaneous wet fermentation (SWF) of locally grown Robusta (Coffea canephora L.) coffee towards the microbiological properties, phytochemical constituents, in particular caffeine and chlorogenic acids (CGA), total phenolic content (TPC), and antioxidant properties. The SWF of green Robusta coffee beans from University Agricultural Park (UAP), Universiti Putra Malaysia, Serdang, Selangor, took place at ambient temperatures between 25 to 28°C, and the pH decreased from 5.2 to 3.64 over five days of fermentation. The total plate count, lactic acid bacteria (LAB) and yeasts were significantly increased to approximately 7 Log10 CFU/g. The SWF has reduced caffeine content by 35%, while the CGA has decreased by roughly 20%. The SWF also led to an increase in TPC of approximately 31.5% and an increase in antioxidant activity of approximately 60%.
Abrahão, F. R., Rocha, L. C. R., Santos, T. A., do Carmo, E. L., Pereira, L. A. S., Borges, S. V., Pereira, R. G. F. A., & Botrel, D. A. (2019). Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT, 103, 116–124. https://doi.org/10.1016/j.lwt.2018.12.061
Acidri, R., Sawai, Y., Sugimoto, Y., Handa, T., Sasagawa, D., Masunaga, T., Yamamoto, S., & Nishihara, E. (2020). Phytochemical profile and antioxidant capacity of coffee plant organs compared to green and roasted coffee beans. Antioxidants, 9(2), 93. https://doi.org/10.3390/antiox9020093
Barbosa, J. N., Borém, F. M., Cirillo, M. A., Malta, M. R., Alvarenga, A. A., & Alves, H. M. R. (2012). Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. Journal of Agricultural Science, 4(5), 181–190. https://doi.org/10.5539/jas.v4n5p181
Bertranda, R. L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201(7), e00697-18. https://doi.org/10.1128/JB.00697-18
Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2011). Identification of chemical clusters discriminators of the roast degree in Arabica and Robusta coffee beans. European Food Research and Technology, 233, 303–311. https://doi.org/10.1007/s00217-011-1518-5
Bote, A. D., & Vos, J. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS: Wageningen Journal of Life Sciences, 83(1), 39–46. https://doi.org/10.1016/j.njas.2017.09.002
da Silva, E. A., Mazzafera, P., Brunini, O., Sakai, E., Arruda, F. B., Mattosso, L. H. C., Carvalho, C. R. L., & Pires, R. C. (2005). The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans. Brazilian Journal of Plant Physiology, 17(2), 229–238.
de Carvalho Neto, D. P., Kim, G. V., Finco, A. M. O., Letti, L. A. J., da Silva, B. J. G., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Bioscience, 26, 80–87. https://doi.org/10.1016/j.fbio.2018.10.005
de Jesus Cassimiro, D. M., Batista, N. N., Fonseca, H. C., Naves, J. A. O., Dias, D. R., & Schwan, R. F. (2022). Coinoculation of lactic acid bacteria and yeasts increases the quality of wet fermented Arabica coffee. International Journal of Food Microbiology, 369, 109627. https://doi.org/10.1016/j.ijfoodmicro.2022.109627
de Melo Pereira, G. V., de Carvalho Neto, D. P., de O. Junqueira, A. C., Karp, S. G., Letti, L. A. J., Júnior, A. I. M. I., & Soccol, C. R. (2019). A review of selection criteria for starter culture development in the food fermentation industry. Food Reviews International, 36(2), 135–167. https://doi.org/10.1080/87559129.2019.1630636
de Melo Pereira, G. V., de Carvalho Neto, D. P., Júnior, A. I. M., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272, 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061
de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Medina, J. D. C., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9, 8794. https://doi.org/10.1038/s41598-019-45002-8
Djossou, O., Perraud-Gaime, I., Mirleau, F. L., Rodriguez-Serrano, G., Karou, G., Niamke, S., Ouzari, I., Boudabous, A., & Roussos, S. (2011). Robusta coffee beans post-harvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius. Anaerobe, 17(6), 267–272. https://doi.org/10.1016/j.anaerobe.2011.03.006
Elhalis, H., Cox, J., & Zhao, J. (2020). Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. International Journal of Food Microbiology, 321, 108544. https://doi.org/10.1016/j.ijfoodmicro.2020.108544
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333, 108796. https://doi.org/10.1016/j.ijfoodmicro.2020.108796
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2021). Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans. LWT, 137, 110430. https://doi.org/10.1016/j.lwt.2020.110430
Evangelista, S. R., da Cruz Pedroso Miguel, M. G., Silva, C. F., Pinheiro, A. C. M., & Schwan, R. F. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008
Evangelista, S. R., Silva, C. F., da Cruz Pedroso Miguel, M. G., de Souza Cordeiro, C., Pinheiro, A. C. M., Duarte, W. F., & Schwan, R. F. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International, 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033
Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M., & Gänzle, M. G. (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46, 272–279. https://doi.org/10.1016/j.fm.2014.08.018
Fioresi, D. B., Pereira, L. L., da Silva Oliveira, E. C., Moreira, T. R., & Ramos, A. C. (2021). Mid infrared spectroscopy for comparative analysis of fermented arabica and robusta coffee. Food Control, 121, 107625. https://doi.org/10.1016/j.foodcont.2020.107625
Getachew, M., Tolassa, K., De Frenne, P., Verheyen, K., Tack, A. J. M., Hylander, K., Ayalew, B., & Boeckx, P. (2022). The relationship between elevation, soil temperatures, soil chemical characteristics, and green coffee bean quality and biochemistry in southwest Ethiopia. Agronomy for Sustainable Development, 42, 61. https://doi.org/10.1007/s13593-022-00801-8
Girma, B., Gure, A., & Wedajo, F. (2020). Influence of altitude on caffeine, 5-caffeoylquinic acid, and nicotinic acid contents of Arabica coffee varieties. Journal of Chemistry, 2020, 3904761. https://doi.org/10.1155/2020/3904761
Gokulakrishnan, S., Chandraraj, K., & Gummadi, S. N. (2005). Microbial and enzymatic methods for the removal of caffeine. Enzyme and Microbial Technology, 37(2), 225–232. https://doi.org/10.1016/j.enzmictec.2005.03.004
Gummadi, S. N., Bhavya, B., & Ashok, N. (2012). Physiology, biochemistry and possible applications of microbial caffeine degradation. Applied Microbiology and Biotechnology, 93, 545–554. https://doi.org/10.1007/s00253-011-3737-x
Hadj Salem, F., Lebrun, M., Mestres, C., Sieczkowski, N., Boulanger, R., & Collignan, A. (2020). Transfer kinetics of labeled aroma compounds from liquid media into coffee beans during simulated wet processing conditions. Food Chemistry, 322, 126779. https://doi.org/10.1016/j.foodchem.2020.126779
Haile, M., & Kang, W. H. (2019). Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms, 7(10), 401. https://doi.org/10.3390/microorganisms7100401
Hakil, M., Voisinet, F., Viniegra-González, G., & Augur, C. (1999). Caffeine degradation in solid state fermentation by Aspergillus tamarii: Effects of additional nitrogen sources. Process Biochemistry, 35(1–2), 103–109. https://doi.org/10.1016/S0032-9592(99)00039-4
Huynh, N. T., Camp, J. V., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes : A review. International Journal of Molecular Sciences, 15(11), 19369–19388. https://doi.org/10.3390/ijms151119369
Jeszka-Skowron, M., Stanisz, E., & De Peña, M. P. (2016). Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT, 73, 243–250. https://doi.org/10.1016/j.lwt.2016.06.018
Joët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., de Kochko, A., & Dussert, S. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701. https://doi.org/10.1016/j.foodchem.2009.05.048
Kath, J., Byrareddy, V. M., Mushtaq, S., Craparo, A., & Porcel, M. (2021). Temperature and rainfall impacts on robusta coffee bean characteristics. Climate Risk Management, 32, 100281. https://doi.org/10.1016/j.crm.2021.100281
Kim, C., Wilkins, K., Bowers, M., Wynn, C., & Ndegwa, E. (2018). Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages. Austin Food Sciences, 3(1), 1031.
Kim, Y., Kim, Y., & Jhon, D.-Y. (2018). Changes of the chlorogenic acid, caffeine, γ-aminobutyric acid (GABA) and antioxdant activities during germination of coffee bean (coffea Arabica). Emirates Journal of Food and Agriculture, 30(8), 675–680. https://doi.org/10.9755/ejfa.2018.v30.i8.1763
Kurniawati, N., Meryandini, A., & Sunarti, T. C. (2016). Introduction of actinomycetes starter on coffee fruits fermentation to enhance quality of coffee pulp. Emirates Journal of Food and Agriculture, 28(3), 188–195. https://doi.org/10.9755/ejfa.2015-05-192
Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2015). Coffee fermentation and flavor - An intricate and delicate relationship. Food Chemistry, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124
Lee, L. W., Tay, G. Y., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. Roasted coffee. LWT, 80, 32–42. https://doi.org/10.1016/j.lwt.2017.01.070
Lee, S.-J., Jeon, H.-S., Yoo, J.-Y., & Kim, J.-H. (2021). Some important metabolites produced by lactic acid bacteria originated from kimchi. Foods, 10(9), 2148. https://doi.org/10.3390/foods10092148
Li, Z., Zhang, C., Zhang, Y., Zeng, W., & Cesarino, I. (2021). Coffee cell walls - Composition, influence on cup quality and opportunities for coffee improvements. Food Quality and Safety, 5, fyab012. https://doi.org/10.1093/fqsafe/fyab012
Liu, C., Yang, N., Yang, Q., Ayed, C., Linforth, R., & Fisk, I. D. (2018). Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chemistry, 281, 8–17. https://doi.org/10.1016/j.foodchem.2018.12.080
Martinez, S. J., Bressani, A. P. P., Dias, D. R., Simão, J. B. P., & Schwan, R. F. (2019). Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology, 10, 1287. https://doi.org/10.3389/fmicb.2019.01287
Martinez, S. J., Simão, J. B. P., Pylro, V. S., & Schwan, R. F. (2021). The altitude of coffee cultivation causes shifts in the microbial community assembly and biochemical compounds in natural induced anaerobic fermentations. Frontiers in Microbiology, 12, 671395. https://doi.org/10.3389/fmicb.2021.671395
Maxiselly, Y., Humaira, D. S., Sari, D. N., & Suherman, C. (2023). Morpho-physiological traits and phytochemical compositions of Coffea canephora beans from Lampung for various harvesting stages and soaking durations. International Journal of Plant Biology, 14(3), 746–754. https://doi.org/10.3390/ijpb14030055
Medina, A., Akbar, A., Baazeem, A., Rodriguez, A., & Magan, N. (2017). Climate change, food security and mycotoxins: Do we know enough? Fungal Biology Reviews, 31(3), 143–154. https://doi.org/10.1016/j.fbr.2017.04.002
Mullen, W., Nemzer, B., Stalmach, A., Ali, S., & Combet, E. (2013). Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. Journal of Agricultural and Food Chemistry, 61(22), 5298–5309. https://doi.org/10.1021/jf4003126
Mun, C. L., & Ling, C. M. W. V. (2022). Tropical soil bacterial diversity in Sabah, Malaysia. Sains Malaysiana, 51(2), 451–460. https://doi.org/10.17576/jsm-2022-5102-10
Nasanit, R., & Satayawut, K. (2015). Microbiological study during coffee fermentation of Coffea arabica var. chiangmai 80 in Thailand. Kasetsart Journal - Natural Science, 49(1), 32–41.
Pereira, L. L., Guarçoni, R. C., Pinheiro, P. F., Osório, V. M., Pinheiro, C. A., Moreira, T. R., & ten Caten, C. S. (2020). New propositions about coffee wet processing: Chemical and sensory perspectives. Food Chemistry, 310, 125943. https://doi.org/10.1016/j.foodchem.2019.125943
Pittia, P., Nicoli, M. C., & Sacchetti, G. (2007). Effect of moisture and water activity on textural properties of raw and roasted coffee beans. Journal of Texture Studies, 38(1), 116-134. https://doi.org/10.1111/j.1745-4603.2007.00111.x
Purwoko, T., Suranto., Setyaningsih, R., & Marliyana, S. D. (2022). Chlorogenic acid and caffeine content of fermented robusta bean. Biodiversitas, 23(2), 902–906. https://doi.org/10.13057/biodiv/d230231
Ramalakshmi, K., Rahath Kubra, I., & Jagan Mohan Rao, L. (2008). Antioxidant potential of low-grade coffee beans. Food Research International, 41(1), 96–103. https://doi.org/10.1016/j.foodres.2007.10.003
Ribeiro, L. S., da Cruz Pedrozo Miguel, M. G., Martinez, S. J., Bressani, A. P. P., Evangelista, S. R., Silva e Batista, C. F., & Schwan, R. F. (2020). The use of mesophilic and lactic acid bacteria strains as starter cultures for improvement of coffee beans wet fermentation. World Journal of Microbiology and Biotechnology, 36, 186. https://doi.org/10.1007/s11274-020-02963-7
Rogozinska, M., Korsak, D., Mroczek, J., & Biesaga, M. (2021). Catabolism of hydroxycinnamic acids in contact with probiotic Lactobacillus. Journal of Applied Microbiology, 131(3), 1464–1473. https://doi.org/10.1111/jam.15009
Rukayadi, Y., Shim, J.-S., & Hwang, J.-K. (2008). Screening of Thai medicinal plants for anticandidal activity. Mycoses, 51(4), 308–312. https://doi.org/10.1111/j.1439-0507.2008.01497.x
Schwan, R. F., & Fleet, G. H. (Eds.) (2014). Cocoa and coffee fermentations (1st ed.). CRC Press. https://doi.org/10.1201/b17536
Seninde, D. R., & Chambers IV, E. (2020). Coffee flavor : A review. Beverages, 6(3), 44. https://doi.org/10.3390/beverages6030044
Silva, C. F., Vilela, D. M., de Souza Cordeiro, C., Duarte, W. F., Dias, D. R., & Schwan, R. F. (2013). Evaluation of a potential starter culture for enhance quality of coffee fermentation. World Journal of Microbiology and Biotechnology, 29, 235–247. https://doi.org/10.1007/s11274-012-1175-2
Tai, E.-S., Hsieh, P.-C., & Sheu, S.-C. (2014). Effect of polygalacturonase and feruloyl esterase from Aspergillus tubingensis on demucilage and quality of coffee beans. Process Biochemistry, 49(8), 1274–1280. https://doi.org/10.1016/j.procbio.2014.05.001
Tarzia, A., dos Santos Scholz, M. B., & de Oliveira Petkowicz, C. L. (2010). Influence of the postharvest processing method on polysaccharides and coffee beverages. International Journal of Food Science and Technology, 45(10), 2167–2175. https://doi.org/10.1111/j.1365-2621.2010.02388.x
Tinoco, N. A. B., Pacheco, S., Godoy, R. L. O., Bizzo, H. R., de Aguiar, P. F., Leite, S. G. F., & Rezende, C. M. (2019). Reduction of βN-alkanoyl-5-hydroxytryptamides and diterpenes by yeast supplementation to green coffee during wet processing. Food Research International, 115, 487–492. https://doi.org/10.1016/j.foodres.2018.10.007
Tran, T. M. K., Kirkman, T., Nguyen, M., & Vuong, Q. V. (2020). Effects of drying on physical properties , phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon, 6(7), e04498. https://doi.org/10.1016/j.heliyon.2020.e04498
Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N., Go, R., Rahim, R. A., Husni, M. H. A., Chun, J., & Adams, J. M. (2012). Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial Ecology, 64, 474–484. https://doi.org/10.1007/s00248-012-0028-8
United State Food and Drug Administration. (n.d.). Bacteriological analytical manual. FDA. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
Vega, F. E., Emche, S., Shao, J., Simpkins, A., Summers, R. M., Mock, M. B., Ebert, D., Infante, F., Aoki, S., & Maul, J. E. (2021). Cultivation and genome sequencing of bacteria isolated from the coffee berry borer (Hypothenemus hampei), with emphasis on the role of caffeine degradation. Frontiers in Microbiology, 12, 6447688. https://doi.org/10.3389/fmicb.2021.644768
Velmourougane, K. (2013). Impact of natural fermentation on physicochemical, micarobiological and cup quality characteristics of arabica and robusta coffee. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 83, 233–239. https://doi.org/10.1007/s40011-012-0130-1
Veloso, T. G. R., da Silva, M. D. C. S., Cardoso, W. S., Guarçoni, R. C., Kasuya, M. C. M., & Pereira, L. L. (2020). Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Scientific Reports, 10, 14692. https://doi.org/10.1038/s41598-020-71309-y
Wang, C., Sun, J., Lassabliere, B., Yu, B., & Liu, S. Q. (2020). Coffee flavour modification through controlled fermentation of green coffee beans by Lactococcus lactis subsp. cremoris. LWT, 120, 108930. https://doi.org/10.1016/j.lwt.2019.108930
Wongsa, P., Khampa, N., Horadee, S., Chaiwarith, J., & Rattanapanone, N. (2019). Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food Chemistry, 283, 579–587. https://doi.org/10.1016/j.foodchem.2019.01.088
Zhang, S. J., de Bruyn, F., Pothakos, V., Torres, J., Falconi, C., Moccand, C., Weckx, S., & de Vuyst, L. (2019). Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Applied and Environmental Microbiology, 85(6), e02635-18. https://doi.org/10.1128/AEM.02635-18
ISSN 0128-7702
e-ISSN 2231-8534
Related Articles