PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdel-Hady, M., Mansour, R., & Ashour, A. (2014, August 24). Cross-lingual twitter polarity detection via projection across word-aligned corpora. In Proceedings of WISDOM (pp. 1-12). New York, USA.

  • Al-Azani, S., & El-Alfy, E. S. M. (2017). Using word embedding and ensemble learning for highly imbalanced data sentiment analysis in short arabic text. Procedia Computer Science, 109, 359-366.

  • Al-Kabi, M. N., Hailat, T. M., Al-Shawakfa, E. M., & Alsmadi, I. M. (2013). Evaluating English to Arabic machine translation using BLEU. International Journal of Advanced Computer Science and Applications (IJACSA), 4(1), 66-73.

  • Alsaeedi, A. (2019). EFTSA: Evaluation framework for Twitter sentiment analysis. Journal of Software, 14(1), 24-35. doi: 10.17706/jsw.14.1.24-35

  • Alsaleem, S. (2011). Automated Arabic text categorization using SVM and NB. International Arab Journal of e-Technology, 2(2), 124-128.

  • Al-Shabi, A., Adel, A., Omar, N., & Al-Moslmi, T. (2017). Cross-lingual sentiment classification from English to Arabic using machine translation. International Journal of Advanced Computer Science and Applications, 8(12), 434-440. doi: 10.14569/IJACSA.2017.081257

  • Araujo, M., Reis, J., Pereira, A., & Benevenuto, F. (2016). An evaluation of machine translation for multilingual sentence-level sentiment analysis. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (pp. 1140-1145). New York, USA: ACM. doi: https://doi.org/10.1145/2851613.2851817

  • Ardabili, S., Mosavi, A., & Várkonyi-Kóczy, A. R. (2019). Advances in machine learning modeling reviewing hybrid and ensemble methods. In International Conference on Global Research and Education (pp. 215-227). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-030-36841-8_21

  • Argueta, C., Calderon, F. H., & Chen, Y. S. (2016). Multilingual emotion classifier using unsupervised pattern extraction from microblog data. Intelligent Data Analysis, 20(6), 1477-1502. doi: 10.3233/IDA-140267

  • Bahrainian, S. A., & Dengel, A. (2013, December 3-5). Sentiment analysis and summarization of twitter data. In 2013 IEEE 16th International Conference on Computational Science and Engineering (pp. 227-234). Sydney, Australia. doi: 10.1109/CSE.2013.44

  • Balahur, A., & Perea-Ortega, J. M. (2015). Sentiment analysis system adaptation for multilingual processing: The case of tweets. Information Processing and Management, 51(4), 547-556. doi: https://doi.org/10.1016/j.ipm.2014.10.004

  • Balahur, A., & Turchi, M. (2012a, September 28). Comparative experiments for multilingual sentiment analysis using machine translation. In Proceedings of the 1st International Workshop in Sentiment Discovery from Affective Data (pp. 75-86). Bristol, UK.

  • Balahur, A., & Turchi, M. (2012b, July 12). Multilingual sentiment analysis using machine translation? In Proceedings of the 3rd workshop in Computational Approaches to Subjectivity and Sentiment Analysis (pp. 52-60). Jeju, Republic of Korea.

  • Balahur, A., & Turchi, M. (2013, September 7-13). Improving sentiment analysis in twitter using multilingual machine translated data. In Proceedings of the International Conference Recent Advances in Natural Language Processing 2013 (pp. 49-55). Hissar, Bulgaria.

  • Balahur, A., & Turchi, M. (2014). Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Computer Speech and Language, 28(1), 56-75. doi: https://doi.org/10.1016/j.csl.2013.03.004

  • Balahur, A., Turchi, M., Steinberger, R., Ortega, J. M. P., Jacquet, G., Küçük, D., & El Ghali, A. (2014). Resource creation and evaluation for multilingual sentiment analysis in social media texts. In Proceedings of the Ninth International Conference on Language Resources and Evaluation 2014 (pp. 4265-4269). Reykjavik, Iceland: European Language Resources Association.

  • Baro, R. A., Pagudpud, M. V., Padirayon, L. M., & Dilan, R. E. (2019, February). Classification of project management tool reviews using machine learning-based sentiment analysis. In IOP Conference Series: Materials Science and Engineering (Vol. 482, No. 1, p. 012041). Bristol, UK: IOP Publishing. doi: https://doi.org/10.1088/1757-899X/482/1/012041

  • Becker, K., Moreira, V. P., & dos Santos, A. G. (2017a). Multilingual emotion classification using supervised learning: Comparative experiments. Information Processing and Management, 53(3), 684-704. doi: https://doi.org/10.1016/j.ipm.2016.12.008

  • Becker, W., Wehrmann, J., Cagnini, H. E., & Barros, R. C. (2017b). An efficient deep neural architecture for multilingual sentiment analysis in twitter. In Proceedings of the Thirtieth International Flairs Conference (pp. 246-251). Palo Alto, California: AAAI Press.

  • Bhargava, R., & Sharma, Y. (2017, January 12-13). MSATS: Multilingual sentiment analysis via text summarization. In Proceedings of 7th International Conference on Cloud Computing, Data Science and Engineering-Confluence 2017 (pp. 71-76). Noida, India. doi: 10.1109/CONFLUENCE.2017.7943126

  • Cruz, F. L., Troyano, J. A., Pontes, B., & Ortega, F. J. (2014). Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Systems with Applications, 41(13), 5984-5994. doi: https://doi.org/10.1016/j.eswa.2014.04.005

  • Cui, A., Zhang, M., Liu, Y., & Ma, S. (2011). Emotion tokens: Bridging the gap among multilingual twitter sentiment analysis. In Asia information retrieval symposium (pp. 238-249). Heidelberg, Germany: Springer. doi: https://doi.org/10.1007/978-3-642-25631-8_22

  • Dadoun, M., & Olssson, D. (2016). Sentiment classification techniques applied to swedish tweets investigating the effects of translation on sentiments from Swedish into English (Degree Project). KTH Royal Institute of Technology, Stockholm, Sweden.

  • Dashtipour, K., Poria, S., Hussain, A., Cambria, E., Hawalah, A. Y., Gelbukh, A., & Zhou, Q. (2016). Multilingual sentiment analysis: State of the art and independent comparison of techniques. Cognitive computation, 8(4), 757-771. doi: https://doi.org/10.1007/s12559-016-9415-7

  • Demirtas, E., & Pechenizkiy, M. (2013). Cross-lingual polarity detection with machine translation. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining (pp. 9-17). Chicago, USA: ACM. doi: https://doi.org/10.1145/2502069.2502078

  • Deriu, J., Lucchi, A., De Luca, V., Severyn, A., Müller, S., Cieliebak, M., … & Jaggi, M. (2017). Leveraging large amounts of weakly supervised data for multi-language sentiment classification. In Proceedings of the 26th International Conference on World Wide Web (pp. 1045-1052). Geneva, Switzerland: International World Wide Web Conferences Steering Committee. doi: https://doi.org/10.1145/3038912.3052611

  • Devika, M. D., Sunitha, C., & Ganesh, A. (2016). Sentiment analysis: A comparative study on different approaches. Procedia Computer Science, 87, 44-49. doi: https://doi.org/10.1016/j.procs.2016.05.124

  • Dinsoreanu, M., & Bacu, A. (2014, October 21-24). Unsupervised twitter sentiment classification. In Proceedings of the International Conference on Knowledge Management and Information Sharing 2014 (pp. 220-227). Rome, Italy. doi: 10.5220/0005079002200227

  • Erdmann, M., Ikeda, K., Ishizaki, H., Hattori, G., & Takishima, Y. (2014). Feature based sentiment analysis of tweets in multiple languages. In International Conference on Web Information Systems Engineering (pp. 109-124). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-11746-1_8

  • Esuli, A., & Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical resource for opinion mining. Proceedings of Language Resources and Evaluation (LREC 2006), 6, 417-422.

  • Gînscă, A. L., Boroş, E., Iftene, A., TrandabĂţ, D., Toader, M., Corîci, M., & Cristea, D. (2011, June 24). Sentimatrix: Multilingual sentiment analysis service. In Proceedings of the 2nd workshop on computational approaches to subjectivity and sentiment analysis (pp. 189-195). Portland, Oregon, USA.

  • Hadi, W. E. M., Salam, M. A., & Al-Widian, J. A. (2010). Performance of NB and SVM classifiers in Islamic Arabic data. In Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications (pp. 1-6). New York, USA: ACM. doi: https://doi.org/10.1145/1874590.1874604

  • Hamouda, A., & Rohaim, M. (2011). Reviews classification using sentiwordnet lexicon. The Online Journal on Computer Science and Information Technology (OJCSIT), 2(1), 120-123.

  • Injadat, M., Salo, F., & Nassif, A. B. (2016). Data mining techniques in social media: A survey. Neurocomputing, 214, 654-670. doi: https://doi.org/10.1016/j.neucom.2016.06.045

  • Jing, T. W., & Murugesan, R. K. (2018). A theoretical framework to build trust and prevent fake news in social media using blockchain. In International Conference of Reliable Information and Communication Technology (pp. 955-962). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-99007-1_88

  • Kaity, M., & Balakrishnan, V. (2017, July 18). A multi-layered framework for building multilingual sentiment lexicons. In Proceedings of the Postgraduate Research Excellence Symposium 2017 (pp. 29-34). Kuala Lumpur, Malaysia.

  • Kang, D., & Park, Y. (2014). Based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach. Expert Systems with Applications, 41(4), 1041-1050. doi: https://doi.org/10.1016/j.eswa.2013.07.101

  • Karima, A., & Smaili, K. (2016, September 29 - October 1). Measuring the comparability of multilingual corpora extracted from Twitter and others. In Proceedings of the Tenth International Conference on Natural Language Processing (HrTAL2016). Dubrovnik, Croatia.

  • Kaur, H., Mangat, V., & Krail, N. (2017). Dictionary based sentiment analysis of hinglish text. International Journal of Advanced Research in Computer Science, 8(5), 816-822. doi: 10.26483/ijarcs.v8i5.3438

  • Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering (EBSE Technical Report). Keele University, UK.

  • Lin, Z., Jin, X., Xu, X., Wang, W., Cheng, X., & Wang, Y. (2014a). A cross-lingual joint aspect/sentiment model for sentiment analysis. In Proceedings of the 23rd ACM international conference on conference on information and knowledge management (pp. 1089-1098). New York, USA: ACM. doi: https://doi.org/10.1145/2661829.2662019

  • Lin, Z., Jin, X., Xu, X., Wang, Y., Tan, S., & Cheng, X. (2014b, August 11-14). Make it possible: Multilingual sentiment analysis without much prior knowledge. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 02 (pp. 79-86). Warsaw, Poland. doi: 10.1109/WI-IAT.2014.83

  • Lo, S. L., Cambria, E., Chiong, R., & Cornforth, D. (2016). A multilingual semi-supervised approach in deriving Singlish sentic patterns for polarity detection. Knowledge-Based Systems, 105, 236-247. doi: https://doi.org/10.1016/j.knosys.2016.04.024

  • Lo, S. L., Cambria, E., Chiong, R., & Cornforth, D. (2017a). Multilingual sentiment analysis: From formal to informal and scarce resource languages. Artificial Intelligence Review, 48(4), 499-527. doi: https://doi.org/10.1007/s10462-016-9508-4

  • Lo, S. L., Chiong, R., & Cornforth, D. (2017b). An unsupervised multilingual approach for online social media topic identification. Expert Systems with Applications, 81, 282-298. doi: https://doi.org/10.1016/j.eswa.2017.03.029

  • Lu, Y., & Mori, T. (2017). Deep learning paradigm with transformed monolingual word embeddings for multilingual sentiment analysis. Computing Research Repository, 2017, 1-10.

  • Maita, A. R. C., Martins, L. C., Lopez Paz, C. R., Peres, S. M., & Fantinato, M. (2015). Process mining through artificial neural networks and support vector machines: A systematic literature review. Business Process Management Journal, 21(6), 1391-1415. doi: https://doi.org/10.1108/BPMJ-02-2015-0017

  • Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis - A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16-32. doi: https://doi.org/10.1016/j.cosrev.2017.10.002

  • Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning. Neural and Statistical Classification, 13(1994), 1-298.

  • Nowson, S., Perez, J., Brun, C., Mirkin, S., & Roux, C. (2015, September 8-11). XRCE personal language analytics engine for multilingual author profiling. In Proceedings of the Working Notes of CLEF 2015 - Conference and Labs of the Evaluation Forum (pp. 1412-1424). Toulouse, France.

  • Padmaja, S., & Fatima, S. S. (2013). Opinion mining and sentiment analysis-an assessment of peoples’ belief: A survey. International Journal of Ad hoc, Sensor & Ubiquitous Computing, 4(1), 21-33. doi: 10.5121/ijasuc.2013.4102

  • Pappas, N., Redi, M., Topkara, M., Jou, B., Liu, H., Chen, T., & Chang, S. F. (2016). Multilingual visual sentiment concept matching. In Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (pp. 151-158). New York, USA: ACM. doi: https://doi.org/10.1145/2911996.2912016

  • Paramasivam, M., & Farashaiyan, A. (2016). Language change and maintenance of Tamil language in the multilingual context of Malaysia. International Journal of Humanities and Social Science Invention, 5(12), 55-60.

  • Patel, S., Nolan, B., Hofmann, M., Owende, P., & Patel, K. (2017). Sentiment analysis: Comparative analysis of multilingual sentiment and opinion classification techniques. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 11(6), 565-571.

  • Pessutto, L. R. C., Vargas, D. S., & Moreira, V. P. (2018, December 3-6). Clustering multilingual aspect phrases for sentiment analysis. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (pp. 182-189). Santiago, Chile. doi: 10.1109/WI.2018.00-91

  • Pustulka-Hunt, E., Hanne, T., Blumer, E., & Frieder, M. (2018, August 27-29). Multilingual sentiment analysis for a swiss gig. In 2018 6th International Symposium on Computational and Business Intelligence (ISCBI) (pp. 94-98). Basel, Switzerland. doi: 10.1109/ISCBI.2018.00028

  • Rajput, R., & Solanki, A. K. (2016). Review of sentimental analysis methods using lexicon-based approach. International Journal of Computer Science and Mobile Computing, 5(2), 159-166.

  • Rosenthal, S., Farra, N., & Nakov, P. (2017). SemEval-2017 task 4: Sentiment analysis in Twitter. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) (pp. 502-518). Vancouver, Canada: Association for Computational Linguistics. doi: 10.18653/v1/S17-2088

  • Saad, M. K., Langlois, D., & Smaıli, K. (2013). Comparing multilingual comparable articles based on opinions. In Proceedings of the Sixth Workshop on Building and Using Comparable Corpora (pp. 105-111). Sofia, Bulgaria: Association of Computational Linguistics.

  • Sabbeh, S. F. (2018). Machine-learning techniques for customer retention: A comparative study. International Journal of Advanced Computer Science and Applications, 9(2), 273-281.

  • Saravia, E., Argueta, C., & Chen, Y. S. (2016). Unsupervised graph-based pattern extraction for multilingual emotion classification. Social Network Analysis and Mining, 6(1), 1-21. doi: https://doi.org/10.1007/s13278-016-0403-4

  • Shalunts, G., & Backfried, G. (2015). SentiSAIL: Sentiment analysis in English, German, and Russian. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 87-97). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-21024-7_6

  • Shalunts, G., & Backfried, G. (2016, October 9-13). Multilingual sentiment analysis on data of the Refugee crisis in Europe. In Proceedings of the Fifth International Conference on Data Analytics 2016 (pp. 45-50). Venice, Italy.

  • Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence (pp. 1015-1021). Heidelberg, Germany: Springer. doi: https://doi.org/10.1007/11941439_114

  • Steinberger, J., Lenkova, P., Kabadjov, M., Steinberger, R., & Van der Goot, E. (2011, September 12-14). Multilingual entity-centered sentiment analysis evaluated by parallel corpora. In Proceedings of the International Conference Recent Advances in Natural Language Processing 2011 (pp. 770-775). Hissar, Bulgaria.

  • Sykes, L. M., Evans, W. G., Buchanan, G., Warren, N., & Fernandes, N. (2018). To pen or to probe. Prescribing versus treating, how to decide. South African Dental Journal, 73(1), 53-55.

  • Tellez, E. S., Miranda-Jiménez, S., Graff, M., Moctezuma, D., Suárez, R. R., & Siordia, O. S. (2017). A simple approach to multilingual polarity classification in Twitter. Pattern Recognition Letters, 94, 68-74. doi: https://doi.org/10.1016/j.patrec.2017.05.024

  • Thakkar, H., & Patel, D. (2015). Approaches for sentiment analysis on twitter: A state-of-art study. Computing Research Repository, 2015, 1-8.

  • Tromp, E., & Pechenizkiy, M. (2011, December 11). Senticorr: Multilingual sentiment analysis of personal correspondence. In 2011 IEEE 11th International Conference on Data Mining Workshops (pp. 1247-1250). Vancouver, Canada. doi: 10.1109/ICDMW.2011.152

  • Tsai, C. F., & Wang, S. P. (2009, March 18-20). Stock price forecasting by hybrid machine learning techniques. In Proceedings of The International Multiconference of Engineers and Computer Scientists (Vol. 1, No. 755, pp. 60-66). Hong Kong, China.

  • Vīksna, R., & Jēkabsons, G. (2018). Sentiment analysis in Latvian and Russian: A survey. Applied Computer Systems, 23(1), 45-51. doi: https://doi.org/10.2478/acss-2018-0006

  • Vilares, D., Alonso, M. A., & Gómez-Rodríguez, C. (2015, September 17). Sentiment analysis on monolingual, multilingual and code-switching twitter corpora. In Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp. 2-8). Lisboa, Portugal.

  • Vilares, D., Alonso, M. A., & Gómez-Rodríguez, C. (2017). Supervised sentiment analysis in multilingual environments. Information Processing and Management, 53(3), 595-607. doi: https://doi.org/10.1016/j.ipm.2017.01.004

  • Vilares, D., Peng, H., Satapathy, R., & Cambria, E. (2018, November 18-21). BabelSenticNet: A commonsense reasoning framework for multilingual sentiment analysis. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1292-1298). Bangalore, India. doi: 10.1109/SSCI.2018.8628718

  • Volkova, S., Wilson, T., & Yarowsky, D. (2013, October 18-21). Exploring demographic language variations to improve multilingual sentiment analysis in social media. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 1815-1827). Washington, USA.

  • Wang, X., Li, J., Yang, X., Wang, Y., & Sang, Y. (2017, October 21-23). Chinese text sentiment analysis using bilinear character-word convolutional neural networks. In Proceedings of International Conference on Computer Science and Application Engineering (CSAE 2017) (pp. 36-43). Shanghai, China. doi: 10.12783/dtcse/csae2017/17466

  • Wehrmann, J., Becker, W. E., & Barros, R. C. (2018). A multi-task neural network for multilingual sentiment classification and language detection on Twitter. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (pp. 1805-1812). New York, USA: ACM. doi: https://doi.org/10.1145/3167132.3167325

  • Yadav, V., & Elchuri, H. (2013, June 14-15). Serendio: Simple and practical lexicon-based approach to sentiment analysis. In Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013) (pp. 543-548). Atlanta, Georgia.

  • Zhou, Y., Demidova, E., & Cristea, A. I. (2016, April). Who likes me more?: Analysing entity-centric language-specific bias in multilingual Wikipedia. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (pp. 750-757). New York, USA: ACM. doi: https://doi.org/10.1145/2851613.2851858

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles