Home / Pre-Press / JST-3108-2021


Optimization of Sugarcane Bagasse Conversion Technologies Using Process Network Synthesis Coupled with Machine Learning

Constantine Emparie Tujah, Rabiatul Adawiyah Ali and Nik Nor Liyana Nik Ibrahim

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.31.4.01

Keywords: Biomass conversion technologies, machine learning, process network synthesis, sugarcane bagasse

Published: 2023-05-24

Sugarcane bagasse is a commonly generated item from the food industry in the world—the amount of sugarcane bagasse production is increasing yearly. In 2017, the reported sugarcane production in Malaysia was 30,000 kg, which resulted in 9,800 kg of sugarcane bagasse. Sugarcane bagasse produces steam as waste management in Malaysia or simply in landfills. This study aims to optimize sugarcane bagasse conversion technologies using process network synthesis. A superstructure of sugarcane bagasse was created via P-Graph, with multiple pathways or processes being considered. Data needed for the sustainability assessment of each pathway was acquired from various journal sources, including conversion fraction, operating and capital cost, greenhouse gas emission, and the selling price of products were implemented into the superstructure. Then, the data from the feasible structure generated would be analyzed using machine learning via Waikato Environment for Knowledge Analysis software. The data sets were analyzed using this software using the selected algorithm as P-graph developed 17 feasible solution structures. All 17 generated solution structures were analyzed using six different classifier algorithms. The multilayer perceptron algorithm had the best and the least error in classifying the data. Hence, the multilayer perceptron algorithm proved that the correlation between products produced from sugarcane bagasse and the profitability of the process was significant. Therefore, the model can be a basis for determining the best process for sugarcane bagasse conversion technologies.

  • Ali, R. A., Ibrahim, N. N. N., Ghani, W. A. W. A. K., Lam, H. L., & Sani, N. S. (2021). Utilization of process network synthesis and machine learning as decision-making tools for municipal solid waste management. International Journal of Environmental Science and Technology, 19, 1985-1996. https://doi.org/10.1007/s13762-021-03250-0

  • Ameram, N., Muhammad, S., Yusof, N. A. N., Ishak, S., Ali, A., Shoparwe, N. F., & Ter, T. P. (2019). Chemical composition in sugarcane bagasse: Delignification with sodium hydroxide. Malaysian Journal of Fundamental and Applied Sciences, 15(2), 232-236. https://doi.org/10.11113/mjfas.v15n2.1118

  • Baker, J. (2018). Biomass Conversion Technologies. BBJ Group. https://www.bbjgroup.com/blog/biomass-conversion-technologies

  • Bertok, B., & Heckl, I. (2016). Process synthesis by the p-graph framework involving sustainability. In G. Ruiz-Mercado & H. Cabezas (Eds.), Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes (pp. 203-225). Elsevier. https://doi.org/10.1016/b978-0-12-802032-6.00009-8

  • Bufoni, A. L., Oliveira, L. B., & Rosa, L. P. (2016). The declared barriers of the large developing countries waste management projects: The star model. Waste Management, 52, 326-338. https://doi.org/10.1016/j.wasman.2016.03.023

  • Cabezas, H., Heckl, I., Bertok, B., & Friedler, F. (2015). Use the P-graph framework to design supply chains for sustainability. Chemical Engineering Progress, 111(1), 41-47.

  • Cleary, J. G., & Trigg, L. E. (1995). K*: An instance-based learner using an entropic distance measure. Machine Learning Proceedings 1995, 108-114. https://doi.org/10.1016/b978-1-55860-377-6.50022-0

  • Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. (1992). Combinatorial algorithms for process synthesis. Computers & Chemical Engineering, 16, S313-S320. https://doi.org/10.1016/s0098-1354(09)80037-9

  • Gupta, P., & Sinha, N. (2000). Neural networks for identification of nonlinear systems: An overview. In N. K. Sinha & M. M. Gupta (Eds.), Soft Computing and Intelligent Systems (pp. 337-356). Elsevier. https://doi.org/10.1016/b978-012646490-0/50017-2

  • Janke, L., Leite, A., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., & Stinner, W. (2015). Biogas production from sugarcane waste: Assessment on kinetic challenges for process designing. International Journal of Molecular Sciences, 16(9), 20685-20703. https://doi.org/10.3390/ijms160920685

  • Kiatkittipong, W., Wongsuchoto, P., & Pavasant, P. (2009). Life cycle assessment of bagasse waste management options. Waste Management, 29(5), 1628-1633. https://doi.org/10.1016/j.wasman.2008.12.006

  • Kulkarni, E. G., & Kulkarni, R. B. (2016). WEKA powerful tool in data mining. International Journal of Computer Applications, 975, 10-15.

  • Landwehr, N., Hall, M., & Frank, E. (2003). Logistic model trees. Machine Learning: ECML 2003, 241-252. https://doi.org/10.1007/978-3-540-39857-8_23

  • Lee, R. P., Meyer, B., Huang, Q., & Voss, R. (2020). Sustainable waste management for zero waste cities in China: potential, challenges and opportunities. Clean Energy, 4(3), 169-201. https://doi.org/10.1093/ce/zkaa013

  • Monteiro, S. N., Candido, V. S., Braga, F. O., Bolzan, L. T., Weber, R. P., & Drelich, J. W. (2016). Sugarcane bagasse waste in composites for multilayered armor. European Polymer Journal, 78, 173-185. https://doi.org/10.1016/j.eurpolymj.2016.03.031

  • Naik, A., & Samant, L. (2016). Correlation review of classification algorithm using data mining Tool: WEKA, Rapidminer, TANAGRA, Orange and KNIME. Procedia Computer Science, 85, 662-668. https://doi.org/10.1016/j.procs.2016.05.251

  • Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent System (3rd ed.). Pearson Education.

  • Puna, J., & Teresa, M. (2010). Thermal conversion technologies for solid wastes: A new way to produce sustainable energy. In E. S. Kumar (Ed.), Waste Management (pp. 129-154). InTech. https://doi.org/10.5772/8461

  • Sangalang, K. P. H., Belmonte, B. A., Ventura, J. R., Andiappan, V., & Benjamin, M. F. D. (2021). P-graph method for optimal synthesis of Philippine agricultural waste-based integrated biorefinery. Chemical Engineering Transactions, 83, 103-108.

  • ttps://doi.org/10.3303/CET2183018

  • Sidana, A., & Farooq, U. (2014). Sugarcane bagasse: A potential medium for fungal cultures. Chinese Journal of Biology, 2014, 1-5. https://doi.org/10.1155/2014/840505

  • Sindhu, R., Gnansounou, E., Binod, P., & Pandey, A. (2016). Bioconversion of sugarcane crop residue for value added products - An overview. Renewable Energy, 98, 203-215. https://doi.org/10.1016/j.renene.2016.02.057

  • Tin, Y. T., Kean, T. T., Hui, C. K., Ponniah, G. D., & Loong, L. H. (2017). Debottlenecking of the Integrated Biomass Network with Sustainability Index in Malaysia. The Journal of The Institution of Engineers, Malaysia, 78(1), 22-26. https://doi.org/10.54552/v78i1.15

  • Varbanov, P. S., Friedler, F., & Klemeš, J. J. (2017). Process network design and optimisation using process graph: The success, the challenges and potential roadmap. Chemical Engineering Transaction, 61, 1549-1554. https://doi.org/10.3303/CET1761256

  • Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Morgan Kaufmann.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles