e-ISSN 2231-8526
ISSN 0128-7680

Home / Pre-Press / JST-3736-2022


Effect of Low Loading Biodegradable Poly(Ethylene Carbonate) to Physicochemical and Mechanical Properties of Melt-Blended Poly(Lactic Acid)

Norkhairun Nisa’ Abdul Rahman, Nur Fadilah Abdul Jabar and Nur Azrini Ramlee

Pertanika Journal of Science & Technology, Pre-Press


Keywords: Biodegradable, low loading, poly(ethylene carbonate), poly(lactic acid), polymer blend

Published: 2023-05-24

Poly(lactic acid)/poly(ethylene carbonate) (PLA/PEC) blends with a low ratio range of PEC contents were successfully prepared via the melt blending technique. The objectives of this study are to evaluate the effect of low content of PEC on the PLA and further characterize the blend using torque analysis, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) analysis, Fourier Transform Infra-Red (FTIR) analysis, and mechanical properties. The PLA/PEC samples with different ratios, which is PLA98/PEC2, PLA96/PEC4, PLA94/PEC6, PLA92/PEC8, and PLA90/PEC10, are selected in this research. The addition of PEC content in PLA reduced the torque value. The PLA90/PEC10 blends degraded first, and 5 wt% weight loss (Td5) of the PEC/PLA blends was decreased with PEC, which influences the thermal stability of the blends. The crystallinity of PLA has changed with the addition of 10% of PEC, resulting in the highest crystallinity up to 48.81%, thus influencing the toughness of the blends, giving the PLA a better modulus of toughness, and increasing the elongation at the break due to the plasticizing effect. Slight changes in the absorbance peaks of carbonyl and ether groups have confirmed the interaction between PLA and PEC even at a low loading of PEC. Due to the low loading of PEC content to PLA, the absorbance peak of PLA/PEC blends for the carbonyl group tends to shift towards a neat PLA peak. Thus, low PEC loading is strongly suggested as an alternative to PLA modification in various applications.

  • Chen, C., Dong, L., & Cheung, M. K. (2005). Preparation and characterization of biodegradable poly(l-lactide)/chitosan blends. European Polymer Journal, 41(5), 958-966.

  • Chen, Q., Mangadlao, J. D., Wallat, J., Leon, A. D., Pokorski, J. K., & Advincula, R. C. (2017). 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties. ACS Applied Materials and Interfaces, 9(4), 4015-4023.

  • Fushimi, R., & Gaffney, A. M. (2014). The new ChemPren process for the conversion of waste plastic to chemicals and fuel. Topics in Catalysis, 57(17-20), 1412-1418.

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), Article e1700782.

  • Gigante, V., Coltelli, M. B., Vannozzi, A., Panariello, L., Fusco, A., Trombi, L., Donnarumma, G., Danti, S., & Lazzeri, A. (2019). Flat die extruded biocompatible poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) Based Films. Polymers, 11(11) Article 1857.

  • Hedayati, F., Moshiri-Gomchi, N., Assaran-Ghomi, M., Sabahi, S., Bahri-Laleh, N., Mehdipour-Ataei, S., Mokhtari-Aliabad, J., & Mirmohammadi, S. A. (2020). Preparation and properties of enhanced nanocomposites based on PLA/PC blends reinforced with silica nanoparticles. Polymers for Advanced Technologies, 31(3), 566-573.

  • Kamaludin, N. H. I., Ismail, H., Rusli, A., Sam, S. T., & Gunny, A. A. N. (2020). Processing, tensile and morphological characteristics of polylactic acid/ Chitosan biocomposites prepared by melt compounding technique. In AIP Conference Proceedings, 2267(1) Article 020002.

  • Lyu, Y., Chen, Y., Lin, Z., Zhang, J., & Shi, X. (2020). Manipulating phase structure of biodegradable PLA/PBAT system: Effects on dynamic rheological responses and 3D printing. Composites Science and Technology, 200 Article 108399.

  • Ma, X., Jiugao, Y., & Wang, N. (2006). Compatibility characterization of poly(lactic acid)/ poly(propylene carbonate) blends. Journal of Polymer Science, Part B: Polymer Physics, 44(1), 94-101.

  • Nofar, M., Mohammadi, M., & Carreau, P. J. (2020). Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. Journal of Applied Polymer Science, 137(45), Article 49387.

  • Ou-Yang, Q., Guo, B., & Xu, J. (2018). Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing. ACS Omega, 3(10), 14309-14317.

  • Patti, A., Acierno, D., Latteri, A., Tosto, C., Pergolizzi, E., Recca, G., Cristaudo, M., & Cicala, G. (2020). Influence of the processing conditions on the mechanical performance of sustainable bio-based PLA compounds. Polymers, 12(10) Article 2197.

  • Pivsa-Art, W., Chaiyasat, A., Pivsa-Art, S., Yamane, H., & Ohara, H. (2013). Preparation of polymer blends between poly(lactic acid) and poly(butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia, 34, 549-554.

  • Prasong, W., Muanchan, P., Ishigami, A., Thumsorn, S., Kurose, T., & Ito, H. (2020). Properties of 3D printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) blends and nano talc composites. Journal of Nanomaterials, 2020 Article 8040517.

  • Ramlee, N. A., & Tominaga, Y. (2018). Preparation and characterization of poly ( ethylene carbonate )/ poly ( lactic acid ) blends. Journal of Polymer Research, 25(2), Article 54.

  • Ramlee, N. A., & Tominaga, Y. (2019a). Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic acid) blends. Polymer, 166, 44-49.

  • Ramlee, N. A., & Tominaga, Y. (2019b). Structural and physicochemical properties of melt-quenched poly ( ethylene carbonate )/ poly ( lactic acid ) blends. Polymer Degradation and Stability, 163, 35-42.

  • Russell, E. B. (2003). Book review: Book review. Journal of Cutaneous Pathology, 30(2), 158-158.

  • Sonseca, A., Madani, S., Rodríguez, G., Hevilla, V., Echeverría, C., Fernández-García, M., Muñoz-Bonilla, A., Charef, N., & López, D. (2020). Multifunctional PLA blends containing chitosan mediated silver nanoparticles: Thermal, mechanical, antibacterial, and degradation properties. Nanomaterials, 10(1) Article 22.

  • Tao, Y., Wang, H., Li, Z., Li, P., & Shi, S. Q. (2017). Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials, 10(4) Article 339

  • Wacharawichanant, S., Opasakornwong, P., Poohoi, R., & Phankokkruad, M. (2019). Morphology, mechanical and thermal properties of poly(Lactic acid)/propylene-ethylene copolymer/cellulose composites. Materials Science Forum, 972, 172-177.

  • Wang, M., Wu, Y., Li, Y. D., & Zeng, J. B. (2017). Progress in toughening poly(lactic acid) with renewable polymers. Polymer Reviews, 57(4), 557-593.

  • Xie, D., Zhao, Y., Li, Y., LaChance, A. M., Lai, J., Sun, L., & Chen, J. (2019). Rheological, thermal, and degradation properties of PLA/PPG Blends. Materials, 12(21) Article 3519.

  • Yayshahri, A. M., Peighambardoust, S. J., & Shenavar, A. (2019). Impact , thermal and biodegradation properties of high impact polystyrene / corn starch blends processed via melt extrusion. Polyolefins Journal, 6(2), 151-158.

  • Zhang, Y., Chen, J., Peng, Q., Song, L., Wang, Z., & Wang, Z. (2020). Hydrogen bonding assisted toughness enhancement of poly(lactide) blended with a bio-based polyamide elastomer of extremely low amounts. Applied Surface Science, 506, Article 144684.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles