PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Pre-Press / JST-3779-2022

 

Effect of Transition Metals Addition on the Nickel Oxide Catalyst toward Reduction Behaviour in Carbon Monoxide Atmosphere

Norliza Dzakaria, Azizul Hakim Lahuri, Fairous Salleh, Tengku Shafazila Tengku Saharuddin, Alinda Samsuri and Mohd Ambar Yarmo

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.31.4.07

Keywords: Carbon monoxide, metal oxide, nickel oxide, nickel, reduction

Published: 2023-05-24

The chemical reduction progression behaviour of transition metals (Mo, Zr, W, Ce, and Co) doped on NiO was studied using temperature programmed reduction (TPR) analysis. A wet impregnation method was applied to synthesise the doped NiO series catalysts. The reduction progress of the catalysts was attained by using a reductant gas at the concentration of 40% v/v CO/N2. X-ray diffraction (XRD) was employed to determine the composition of the reduced phases. Undoped NiO was reduced at 384℃ to obtain a cubic phase of NiO. It was observed that Ce/NiO exhibited the lowest reduction temperature of 370℃ among all catalysts. This phenomenon might be due to a higher surface area of Ce/NiO compared to undoped NiO, which facilitated a faster reduction reaction. The rest of the doped NiO series catalysts (Co/NiO, Mo/NiO, W/NiO and Zr/NiO) demonstrated a higher reduction temperature compared to undoped NiO. New peaks in the XRD pattern were observed only for the reduced catalysts of Mo/NiO and W/NiO, which were associated with monoclinic MoO2 and WO2.72 phases, respectively. The formation of new compounds or more stable nickel alloys led to a slower reduction reaction than undoped NiO. Therefore, Ce/NiO was the most efficient catalyst in promoting the formation of Ni under the CO atmosphere.

  • Ahmad T., Pandey V., Saddam Husain M., Adiba, & Munjal S. (2022). Structural and spectroscopic analysis of pure phase hexagonal wurtzite ZnO nanoparticles synthesized by sol-gel. Materials Today Proceeding. 49, 1694-1697. https://doi.org/10.1016/j.matpr.2021.07.456

  • Alizadeh, R., Jamshidi, E., & Ale-Ebrahim, H. (2007). Kinetic study of nickel oxide reduction by methane. Chemical Engineering and Technology 30(8), 1123-1128. https://doi.org/10.1002/ceat.200700067

  • Anastasios I. T., Nikolas D. C., Ioannis V. Y., & Maria A. G. (2021). Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials, 11(28), 1-34.

  • Charisiou, N. D., Papageridis, K. N., Tzounis, L., Sebastian, V., Hinder, S. J., Baker, M. A., AlKetbi, M., Polychronopoulou, K., & Goula, M. A. (2019). Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction. International Journal of Hydrogen Energy, 44(1), 256-273. https://doi.org/10.1016/j.ijhydene.2018.02.165

  • Charisiou, N. D., Tzounis, L., Sebastian, V., Hinder, S. J., Baker, M. A., Polychronopoulou, K., & Goula, M. A. (2019). Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3 -Al2O3 catalysts during the biogas reforming reaction. Applied Surface Science, 474, 42–56. https://doi.org/10.1016/j.apsusc.2018.05.177

  • Cho D. Y., Luebben M., Wiefels S., Lee K. S., & Valov. I. (2017). Interfacial metal-oxide interactions in resistive switching memories. ACS Applied Materials & Interfaces, 9(22), 19287-19295. https://doi.org/10.1021/acsami.7b02921

  • Dzakaria, N., Lahuri, A. H., Tengku Saharuddin, T. S., Samsuri, A, Salleh, F., Wan Isahak, W. N. R., Yusop, M. R., & Yarmo, M. A. (2021). Preparation of cerium doped nickel oxide for lower reduction temperature in carbon monoxide atmosphere. Malaysian Journal of Analytical Sciences, 25(3), 521-531.

  • Dzakaria, N., Tahari, M. N. A., Samidin, S., Tengku Saharuddin, T. S., Salleh, F., Lahuri, A. H., & Yarmo, M. A. (2020). Effect of cobalt on nickel oxide toward reduction behaviour in hydrogen and carbon monoxide atmosphere. Material Science Forum, 1010, 373-378.

  • https://doi.org/10.4028/www.scientific.net/MSF.1010.373

  • Dzakaria, N., Samsuri, A., Halim, A., M. A., Saharuddin, T. S. T., Tahari, M. N. A., Salleh, F., Yusop, M. R., Isahak, W. N. R. W., Hisham, M. W. M., & Yarmo, M. A. (2020). Chemical reduction behavior of zirconia doped to nickel at different temperature in carbon monoxide atmosphere. Indonesian Journal of Chemistry, 20(1), 105-112. https://doi.org/10.22146/ijc.40891

  • Fakeeha A., Ibrahim A. A., Aljuraywi H., Alqahtani Y., Alkhodair A., Alswaidan S., Abasaeed A. E, Kasim S. O., Mahmud S., & Al-Fatesh A. S. (2020). Hydrogen production by partial oxidation reforming of methane over Ni catalysts supported on high and low surface area alumina and zirconia. Processes, 8(5), Article 499. https://doi.org/10.3390/pr8050499

  • Farber S., Ickowicz D. E., Melnik K., Yudovin-Farber I., Recko D., Rampersaud A., & Domb A. J. (2014). Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans. Journal of Nanoparticle Research, 16, Article 2425. https://doi.org/10.1007/s11051-014-2425-z

  • Hasannejad, H., Shahrab, T., & Jafarian, M. (2012). Synthesis and properties of high corrosion resistant Ni-cerium oxide nano-composite coating. Material Corrosion, 64(12), 1104-1113. https://doi.org/10.1002/maco.201106484

  • Hakim. A., Tahari, M. N. A., Marliza, T. S., Wan Isahak, W. N. R., Yusop, M. R., Hisham, W. W. M., & Yarmo, M. A. (2015). Study of CO2 adsorption and desorption on activated carbon supported iron oxide by Temperature Programmed Desorption. Jurnal Teknologi (Sciences & Engineering), 77(33), 75-84. https://doi.org/10.11113/jt.v77.7010

  • Hakim, A., Isahak, W. N. R. W., Yusop, M. R., Tahari, M. N. A., Hisham, M. W. M., & Yarmo, M. A. (2015). Temperature programmed desorption of carbon dioxide for activated carbon supported nickel oxide: The adsorption and desorption studies. Advanced Materials Research. 1087, 45-49. https://doi.org/10.4028/www.scientific.net/AMR.1087.45

  • Hakim, A., Yarmo, M. A., Marliza, T. S., Tahari, M. N. A., Samad, W. Z., Yusop, M. R., Hisham, W. W. M., & Dzakaria, N. (2016). The influence of calcination temperature on iron oxide (α-Fe2O3) towards CO2 adsorption prepared by simple mixing method. Malaysian Journal of Analytical Sciences, 20(6), 1286-1298. http://dx.doi.org/10.17576/mjas-2016-2006-07

  • Kaiser M. (2004). Semiconductor-to-metallic transition in Cu-substituted Ni - Mn ferrite. Physica Status Solidi, 201(14), 3157-3165. https://doi.org/10.1002/pssa.200406861

  • Khan, I., Saeed, K., & Khan I. (2019), Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011

  • Krasuk, J. H., & Smith, J. M. (1972). Kinetics of reduction of nickel oxide with carbon monoxide. AIChE Journal 18(3), 506-512. https://doi.org/10.1002/aic.690180308

  • Lahuri, A. H., Ling, N. K. M., Rahim, A. A., & Nordin, N. (2020). Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon. Acta Chimica Slovenica, 67(2), 570-580. http://dx.doi.org/10.17344/acsi.2019.5572

  • Lahuri, A. H., Yusuf, A. M., Adnan, R., Rahim, A. A., Tajudee, N. F. W., & Nordin, N. (2022). Kinetics and thermodynamic modeling for CO2 capture using NiO supported activated carbon by temperature swing adsorption. Biointerface Research in Applied Chemistry, 12(3), 4200-4219. https://doi.org/10.33263/BRIAC123.42004219

  • Lv, C., Xu, L., Chen, M., Cui, Y., Wen, X., Li, Y., Wu, C.E., Yang, B., Miao, Z., & Hu, X. (2020). Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation. Frontiers in Chemistry, 8, Article 269. https://doi.org/10.3389/fchem.2020.00269

  • Othman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902. https://doi.org/10.3390/ma5122874

  • Oudejans D., Offidani M., Constantinou A., Albonetti S., Dimitratos N., & Bansode A. (2022). A comprehensive review on two-step thermochemical water splitting for hydrogen production in a redox cycle. Energies, 15(9), Article 3044. https://doi.org/10.3390/en15093044

  • Pandey V., Adiba, Munjal S., & Ahmad T. (2020). Optical properties and spectroscopic investigation of single phase tetragonal Mn3O4 nanoparticles. Material Today Proceeding, 26, 1181-1183. https://doi.org/10.1016/j.matpr.2020.02.238

  • Papageridis, K. N., Charisiou, N. D., Douvartzides, S., Sebastian, V., Hinder, S. J., Baker, M. A., AlKhoori, S., Polychronopoulou, K., & Goula, M. A. (2020). Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil. Renewable Energy, 162, 1793-1810. https://doi.org/10.1016/j.renene.2020.09.133

  • Parkinson, G. S., Mulakaluri, N., Losovyj, Y., Jacobson, P., Pentcheva, R., & Diebold, U. (2010). Semiconductor-half metal transition at the Fe3O4 (001) surface upon hydrogen adsorption. Physical Review B, 82, Article 125413. https://doi.org/10.1103/PhysRevB.82.125413

  • Rebello, A., & Adeyeye, A. O. (2016). Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures. Scientific Reports, 6, Article 28007. https://doi.org/10.1038/srep28007

  • Salleh, F., Saharuddin, T. S. T., Samsuri, A., Othaman, R., & Yarmo, M. A. (2015). Effect of zirconia and nickel doping on the reduction behavior of tungsten oxide in carbon monoxide atmosphere. International Journal of Chemical Engineering Application, 6(6), 389-394. https://doi.org/10.7763/ijcea.2015.v6.516

  • Sharma, K., Vastola, F. J., & Walker, P. L. 1997. Reduction of nickel oxide by carbon: III. Kinetic studies of the interaction between nickel oxide and natural graphite. Carbon, 35(4), 535-541. https://doi.org/10.1016/S0008-6223(97)83728-1

  • Siakavelas, G. I., Charisiou, N. D., AlKhoori, S., AlKhoori, A. A., Sebastian, V., Hinder, S. J., Baker, M. A., Yentekakis, I. V., Polychronopoulou, K., & Goula, M. A. (2021). Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction. Applied Catalysis B: Environmental, 282, Article 119562. https://doi.org/10.1016/j.apcatb.2020.119562

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., & Rouquerol, J. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603-619. https://doi.org/10.1351/pac198557040603

  • Sun, J., Zhang, X., Jin, M., Xiong, Q., Wang, G., Zhang, H., & Zhao, H. (2020). Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts. Nano Research, 14, 268-274. https://doi.org/10.1007/s12274-020-3083-3

  • Tsiotsias, A. I., Charisiou, N. D., Yentekakis, I. V., & Goula, M. A. (2020). The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. Catalysts, 10(7), Article 812. https://doi.org/10.3390/catal10070812

  • Vazinishayan, A., Lambada, D. R., Yang, S., Zhang, G., Cheng, B., Woldu, Y. T., Shafique, S., Wang, Y., & Anastase, N. (2018). Effects of mechanical strain on optical properties of ZnO nanowire. AIP Advances, 8(2), Article 025306. https://doi.org/10.1063/1.5016995

  • Wondimu, T. H., Bayeh, A. W., Kabtamu, D. M., Xu, Q., Leung, P., & Shah, A. A. (2022). Recent progress on tungsten oxide-based materials for the hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 47(47), 20378-20397. https://doi.org/10.1016/j.ijhydene.2022.04.226

  • Zheng, J., Dong, Y., Wang, W., Ma, Y., Hu, J., Chen, X., & Chen, X. (2013). In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity. Nanoscale, 5(11), 4894-4901. https://doi.org/10.1039/C3NR01075A

  • Zurina, S. W. (2015). Conversion of glycerol to 1,2-propanadiol and methanol by hydrogenolysis and sub-critical fluid techniques using fluorine-doped tin oxide (FTO) catalyst. Universiti Kebangsaan Malaysia.

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-3779-2022

Download Full Article PDF

Share this article

Related Articles