Home / Pre-Press / JST-3801-2022


Evaluation the Situation of Heavy Metal Contamination on a Sandy Beach in the Eastern Provinces of Thailand

Patarapong Kroeksakul, Pakjirat Singhaboot, Sujit Pokanngen, Kitsakorn Suksamran and Channaphat Klansawang

Pertanika Journal of Science & Technology, Pre-Press

DOI: https://doi.org/10.47836/pjst.31.4.11

Keywords: Beach, Eastern provinces of Thailand, Enrichment Factor (EF), geoaccumulation index (Igeo), heavy metals, Thai Gulf

Published: 2023-05-25

Thailand's eastern provinces are essential as a hub for industry and tourism, effect to the study has purposed for heavy metal contamination of a beach in the Thai Gulf area in the east of Thailand was monitored and focuses on the use of the enrichment factor (EF) and geoaccumulation index (Igeo) to indicate the environmental condition of beaches. The 30 sample sites were in Chonburi (CHR), Rayong (RY), Chanthaburi (CB), and Trad (TR) provinces, along a sandy beach of about 320 kilometers in length. An inductively coupled plasma technique (ICP-OES) was used to analyze the heavy metals present in the samples. The sand of the range with granulometries greater than 0.85 (18%), between 0.85–0.25 (77%), or less than 0.25 mm (5%). The most common heavy metal found in the samples was Fe at 1632±931 mg/kg dry weight, and the number of heavy metals found in the samples did not exceed the Pollution Control Department of Thailand standards. Principle Component Analysis (PCA) indicated that land use activities influence Hg content. The Igeo of Hg was 1–1.99 (moderately polluted) in sample location 4th of the Rayong province, which has an industrial zone and a port. The EF was mainly within the range of 2–5 in the four provinces studied (indicating deficiency to minimal enrichment), except for one location in Trad and Rayong province, which had an EF of over 5; a possible reason for this is that the area is close to agricultural and aquacultural zones, the government organizations can use the data to plan, monitor, and promote tourism in the future.

  • Alshahri, F. (2017). Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution. Environmental Science Pollution Research, 24, 1821-1831. https://doi.org/10.1007/s11356-016-7961-x

  • Alvers, L. R., Reis, R. A., & Gratao, P. L. (2016). Heavy metals in agricultural soils: from plants to our daily life (a review). Cientifica, 44(3), 346-361. https://doi.org/10.15361/1984-5529.2016V44N3P346-361

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal Geology & Geophysics, 5(1), Article 1000237.

  • Benssa, A. Z. E., Ngueutchoua, G., Janpou, A. K., El-Amier, Y. A., Nguetnga, O. A. N. N. Kayou, U. R. K., Bisse, S. B., Mapuna, E. C. N., & Armstrong-Altrin, J. S. (2021). Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean (Limbe coastal fringes, Cameroon). Earth Systems and Environment, 5, 433-444. https://doi.org/10.1007/s41748-020-00167-5

  • Bern, C. R., Walton-Day, K., & Naftz, D. L. (2019). Improved enrichment factor calculations through principal component analysis: Examples from soils near breccia pipe uranium mines, Arizona, USA. Environmental Pollution, 248, 90-100. https://doi.org/10.1016/j.envpol.2019.01.122

  • Brandl, P., Regelous, M., Beler, C., & Haase, K. (2013). High mantle temperatures following rifting caused by continental insulation. Nature Geoscience, 6, 391-394. https://doi.org/10.1038/ngeo1758

  • Cabrini, T. M. B., Barboza, C. A. M., Skinner, V. B., Hauser-Davis, R. A., Rocha, R. C., Saint'Pierre, T. D., Valentin, J. L., & Cardoso, R. S. (2017). Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil. Environmental Pollution, 221, 116-129. https://doi.org/10.1016/j.envpol.2016.11.053.

  • Chen, L., Larson, S. L., Ballard, J. H., Ma, Y., Zhang, Q., Li, J., Wu, L., Arslan, Z., & Han, F. X. (2019). Laboratory spiking process of soil with various uranium and other heavy metals. MethodsX, 6, 737-739. https://doi.org/10.1016/j.mex.2019.03.026

  • Choi, J. Y., Jeong, H., Choi, K., Hong, G. H., Yang, D. B., Kim, K., & Ra, K. (2020). Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Marine Pollution Bulletin, 161, Article 111724. https://doi.org/10.1016/j.marpolbul.2020.111724

  • Chopra, K. A., & Phathak, C. (2009). Scenario of heavy metal contamination in agricultural soil and its management. Journal of Applied and Natural Science, 1(1), 99-108. https://doi.org/10.31018/jans.v1i1.46

  • Foteinis, S., Kallithrakas-Kontos, K. G., & Synolakis, C. (2013). Heavy metal distribution in opportunistic beach nourishment: A case study in Greece. The Scientific World Journal, 2013, Article 472149. https://doi.org/10.1155/2013/472149

  • Gioia, R., Dachs, J., Nizzetto, L., Berrojalbiz, N., Galban, C., Vento, D. S., MeJanell, L., & Jone, C. K. (2011). Sources, transport and fate of organic pollutants in the oceanic environment. In M. Quante, R. Ebinghaus & G. Flöser (Eds.), Persistent Pollution - Past, Present and Future: School of Environmental Research (pp.111-139). Springer. https://doi.org/10.1007/978-3-642-17419-3_8

  • Guan, Y., Shao, C., & Ju, M. (2014). Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health, 11(7), 7286-7303. https://doi.org/10.3390/ijerph110707286

  • Ilyina, T., Pohlmann, T., Lammel, G., & Sundermann, J. (2006). A fate and transport ocean model for persistent organic pollutants and its application to the North Sea. Journal of Marine Systems, 63(1-2), 1-19. https://doi.org/10.1016/j.jmarsys.2006.04.007

  • Khaled, A., Abdel-Halim, A., El-Sherif, Z., & Mohamed, L. (2017). Health risk assessment of some heavy metals in water and sediment at Marsa-Matrouh, Mediterranean Sea, Egypt. Journal of Environmental Protection, 8(1), 74-97. http://doi: 10.4236/jep.2017.81007

  • Khayan, K., Husodo, H. A., Astuti, I., Sudarmadji, S., & Djohan, S. T. (2019). Rainwater as a source of drinking water: health impacts and rainwater treatment. Journal of Environmental and Public Health, 2019, Article 760950. https://doi.org/10.1155/2019/1760950

  • Kim, S., & Choi, Y. (2019). Mapping heavy metal concentrations in beach sands using GIS and portable XRF data. Journal of Marine Science and Engineering, 7(2), Article 42. http://doi:10.3390/jmse7020042

  • Liu, S., Shi, X., Yang, G., Khokiattiwong, S., & Kornkanitnan, N. (2016). Concentration distribution and assessment of heavy metals in the surface sediment of the western Gulf of Thailand. Environmental Earth Science, 75, Article 346. https://doi.org/10.1007/s12665-016-5422-y

  • Looi, L. J., Aris, A. Z., Yusoff, F. M., Isa, N. M., & Haris, H. (2018). Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments. Environmental Geochemistry and Health, 41, 27-42. https://doi.org/10.1007/s10653-018-0149-1

  • Maanan, M., Zourarah, B., Carruesco, C., Aajjane, A., & Naud, J. (2004). The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). Journal of African Earth Sciences, 39(3-5), 473-483. https://doi.org//10.1016/j.jafrearsci.2004.07.017

  • Magesh, N. S., Chandrasekar, N., & Vetha-Roy, D. (2011). Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuarine, Coastal and Shelf Science, 92(4), 618-628. https://doi.org/10.1016/j.ecss.2011.03.001

  • Muller, G. (1980). Schwermetalle in Sedimenten des staugeregelten Neckars [Heavy metals in sediments of the impounded]. Naturwissenschaften, 67, 308-309. https://doi.org/10.1007/bf01153502

  • National Statistic Office Thailand. (2021). Tourism-Statistics. http://service.nso.go.th/nso/web/statseries/statseries23.html

  • Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253-264. https://doi.org/10.1016/j.ecss.2009.12.019

  • Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara biosphere reserve, Iran. Chemical Speciation & Bioavailability, 26(2), 99-105. https://doi.org/10.3184/095422914x13951584546986

  • Pavilonis, B. T., Lioy, P. J., Guazzetti, S., Bostick, B. C., Donna, F., Peli, M., Zimmerman, N. J., Bertrand, P., Lucas, E., Smith, D. R., Georgopoulos, P. G., Mi, Z., Royce, S. G., & Lucchini, R. G. (2015). Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. Journal of Exposure Science & Environmental Epidemiology, 25, 443-450. https://doi.org/10.1038/jes.2014.70

  • Pellinen, V. A., Cherkashina, T. Y., Ukhova, N. N., & Komarova, A. V. (2021). Role of gravitational processes in the migration of heavy metals in soils of the Priolkhonye mountain-steppe landscapes, Lake Baikal: Methodology of research. Agronomy, 11(10), Article 2007. https://doi.org/10.3390/agronomy11102007

  • Pollution Control Department. (2021). Quantity Standard Control in Soil. http://www.envimtp.com/info_pic/TT.PDF

  • Potipat, J., Tanglrock-olan, N., & Helander, H. F. (2015). Distribution of selected heavy metals in sediment of the river basin of coastal area of Chanthaburi province, Gulf of Thailand. EnvironmentAsia, 8(1), 166-143.

  • Sanz-Prada, L., García-Ordiales, E., Roqueñí, N., Grande Gil, J. A., & Loredo, J. (2020). Geochemical distribution of selected heavy metals in the Asturian coastline sediments (North of Spain). Marine Pollution Bulletin, 156, Article 111263. https://doi.org/10.1016/j.marpolbul.2020.111263

  • Thongra-ar, W., Musika, C., Wongsudawan, W. & Munhapol, A. (2008). Heavy metals contamination in sediments along the eastern coast of the Gulf of Thailand. EnvironmentAsia, 1(1), 37-45. https://doi.org/10.14456/ea.2008.5

  • Vilhena, J. C. E., Amorim, A., Ribeiro, L., Duarte, B., & Pombo, M. (2021). Baseline study of trace element concentrations in sediments of the intertidal zone of Amazonian oceanic beaches. Frontiers in Marine Science, 8, Article 671390. https://doi.org/10.3389/fmars.2021.671390

  • WHO. (2007). Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution. WHO Regional Office for Europe. https://apps.who.int/iris/handle/10665/107872

  • Yorifuji, T., & Harada, M. (2011). Environmental health research implications of methylmercury. Environmental Health Perspectives, 119(7), Article A284. https://doi.org/10.1289/ehp.1103580

  • Zhao, X., & Wang, D. (2010). Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.). Journal of Environmental Sciences, 22(8), 1184-1188. https://doi.org/10.1016/S1001-0742(09)60236-9

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles