Home / Regular Issue / JST Vol. 31 (S1) 2023 / JST(S)-0584-2023

 

Optimizing the Mechanical Performance of Green Composite Materials Using Muti-Integrated Optimization Solvers

Mahmoud Mohammad Rababah and Faris Mohammed AL-Oqla

Pertanika Journal of Science & Technology, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.01

Keywords: B-Spline, composite materials, epoxy, mechanical properties, natural fibers, optimization

Published on: 27 October 2023

Natural fiber composites are potential alternatives for synthetic materials due to environmental issues. The overall performance of the fiber composites depends on the reinforcement conditions. Thus, this work aimed to optimize the reinforcement conditions of the natural fiber composites to improve their mechanical performance via applying an integrated scheme of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and differential evolution (DE) methods considering various reinforcement conditions including fiber length, fiber loading, and treatment time for optimal characteristics of the composite mechanical performance. The B-Spline approximation function was adopted to predict the experimental performance of green composites. The B-Spline approximation function demonstrated incomparable accuracy compared to linear or quadratic regressions. The function is then optimized using an integrated optimization method. Results have demonstrated that optimal reinforcement conditions for the maximized desired mechanical performance of the composite were achieved with high accuracy. The robustness of the proposed approach was approved using various surface plots of the considered input-output parameter relations. Pareto front or the non-dominated solutions of the desired output mechanical properties were also obtained to demonstrate the interaction between the desired properties to facilitate finding the optimal reinforcement conditions of the composite materials.

  • Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., Sugiarti, E., Sapuan, S. M., Ilyas, R. A., & Stephane, I. (2019). A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 93, 276-283. https://doi.org/10.1016/j.foodhyd.2019.02.012

  • Agarwal, A., & Mthembu, L. (2022). Structural analysis and weight optimization of automotive chassis by Latin hypercube sampling using metal matrix composites. Materials Today: Proceedings, 60(3), 2132-2140. https://doi.org/10.1016/j.matpr.2022.02.059

  • Al-Jarrah, R., & Al-Oqla, F. M. (2022). A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing. Composite Structures, 289, 115475. https://doi.org/10.1016/j.compstruct.2022.115475

  • Al-Oqla, F. M., Alaaeddin, M., & El-Shekeil, Y. (2021). Thermal stability and performance trends of sustainable lignocellulosic olive/low density polyethylene biocomposites for better environmental green materials. Engineering Solid Mechanics, 9(4), 439-448. https://doi.org/10.5267/j.esm.2021.5.002

  • Al-Oqla, F. M., & Thakur, V. K. (2021). Toward chemically treated low-cost lignocellulosic parsley waste/polypropylene bio-composites for resourceful sustainable bio-products. International Journal of Environmental Science and Technology, 19(7), 668-6690. https://doi.org/10.1007/s13762-021-03601-x

  • Al-Oqla, F. M. (2021a). Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose, 28(4), 2203-2213. https://doi.org/10.1007/s10570-020-03649-x

  • Al-Oqla, F. M. (2021b). Predictions of the mechanical performance of leaf fiber thermoplastic composites by FEA. International Journal of Applied Mechanics, 13(06), 2150066. https://doi.org/10.1142/S1758825121500666

  • Al-Oqla, F. M. (2022). Manufacturing and delamination factor optimization of cellulosic paper/epoxy composites towards proper design for sustainability. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-9. https://doi.org/10.1007/s12008-022-00980-4

  • Al-Oqla, F. M. (2023). Biomaterial hierarchy selection framework under uncertainty for more reliable sustainable green products, 75(7), 2187-2198. https://doi.org/10.1007/s11837-023-05797-4

  • Al-Oqla, F. M., & Al-Jarrah, R. (2021). A novel adaptive neuro-fuzzy inference system model to predict the intrinsic mechanical properties of various cellulosic fibers for better green composites. Cellulose, 28(13), 8541-8552. https://doi.org/10.1007/s10570-021-04077-1

  • Al-Oqla, F. M., Alaaeddin, M. H., Hoque, M. E., & Thakur, V. K. (2022). Biopolymers and biomimetic materials in medical and electronic-related applications for environment–health–development nexus: Systematic review. Journal of Bionic Engineering, 19(6), 1562-1577. https://doi.org/10.1007/s42235-022-00240-x

  • Al-Oqla, F. M., & Hayajneh, M. T. (2020). A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. International Journal of Sustainable Engineering, 14(5), 1043-1048. https://doi.org/10.1080/19397038.2020.1822951

  • Al-Oqla, F. M., & Hayajneh, M. T. (2022). Stress failure interface of cellulosic composite beam for more reliable industrial design. International Journal on Interactive Design and Manufacturing (IJIDeM), 16(4), 1727-1738. https://doi.org/10.1007/s12008-022-00884-3

  • Al-Oqla, F. M., Hayajneh, M. T., & Al-Shrida, M. A. M. (2022). Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose, 29(6), 3293-3309. https://doi.org/10.1007/s10570-022-04498-6

  • Al-Oqla, F. M., Hayajneh, M. T., & Nawafleh, N. (2023). Advanced synthetic and biobased composite materials in sustainable applications: a comprehensive review. Emergent Materials, 1-18. https://doi.org/10.1007/s42247-023-00478-z

  • Al-Oqla, F. M., & Sapuan, S. (2018). Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment, 26(3), 1290-1296. https://doi.org/10.1007/s10924-017-1028-z

  • Al-Oqla, F. M., & Sapuan, S. (2020). Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier.

  • Al-Shrida, M. a. M., Hayajneh, M. T., & Al-Oqla, F. M. (2023). Modeling and investigation of the influential reinforcement parameters on the strength of polypropylene lignocellulosic fiber composites using analysis of variances and box-cox transformation technique. Materials Research, 26, e20220386. https://doi.org/10.1590/1980-5373-MR-2022-0386

  • Ariawan, D., Raharjo, W. P., Diharjo, K., Raharjo, W. W., & Kusharjanta, B. (2022). Influence of tropical climate exposure on the mechanical properties of rHDPE composites reinforced by zalacca midrib fibers. Evergreen, 9(3), 662-672. https://doi.org/10.5109/4842526

  • Aridi, N., Sapuan, S., Zainudin, E., & Al-Oqla, F. M. (2016). Mechanical and morphological properties of injection-molded rice husk polypropylene composites. International Journal of Polymer Analysis and Characterization, 21(4), 305-313. https://doi.org/10.1080/1023666X.2016.1148316

  • Balakrishna, A., Rao, D. N., & Rakesh, A. S. (2013). Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus flabellifer (Asian palmyra) fiber reinforced composite. Composites Part B: Engineering, 55, 479-485. https://doi.org/10.1016/j.compositesb.2013.07.006

  • Balıkoğlu, F., Demircioğlu, T. K., Yıldız, M., Arslan, N., & Ataş, A. (2020). Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: Effect of resin pins. Journal of Sandwich Structures & Materials, 22(6), 2030-2048. https://doi.org/10.1177/10996362187926

  • BaniHani, S. M., Al-Oqla, F. M., Hayajneh, M., Mutawe, S., & Almomani, T. (2022). A new approach for dynamic crack propagation modeling based on meshless Galerkin method and visibility based criterion. Applied Mathematical Modelling, 107, 1-19. https://doi.org/10.1016/j.apm.2022.02.010

  • Belaadi, A., Boumaaza, M., Amroune, S., & Bourchak, M. (2020). Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. The International Journal of Advanced Manufacturing Technology, 111(7), 2073-2094. https://doi.org/10.1007/s00170-020-06217-6

  • Borsoi, C., Júnior, M. A. D., Beltrami, L. V. R., Hansen, B., Zattera, A. J., & Catto, A. L. (2020). Effects of alkaline treatment and kinetic analysis of agroindustrial residues from grape stalks and yerba mate fibers. Journal of Thermal Analysis and Calorimetry, 139(5), 3275-3286. https://doi.org/10.1007/s10973-019-08666-y

  • Chaudhuri, S., Chakraborty, R., & Bhattacharya, P. (2013). Optimization of biodegradation of natural fiber (Chorchorus capsularis): HDPE composite using response surface methodology. Iranian Polymer Journal, 22, 865-875. https://doi.org/10.1007/s13726-013-0185-8

  • Churchwell, J. H., Sowoidnich, K., Chan, O., Goodship, A. E., Parker, A. W., & Matousek, P. (2020). Adaptive band target entropy minimization: Optimization for the decomposition of spatially offset Raman spectra of bone. Journal of Raman Spectroscopy, 51(1), 66-78. https://doi.org/10.1002/jrs.5749

  • Du, Y., Xu, J., Fang, J., Zhang, Y., Liu, X., Zuo, P., & Zhuang, Q. (2022). Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. Journal of Materials Chemistry A, 10(12), 6690-6700. https://doi.org/10.1039/D1TA11025J

  • Fairuz, A. M., Sapuan, S. M., Zainudin, E. S., & Jaafar, C. N. A. (2014). Polymer composite manufacturing using a pultrusion process: A review. American Journal of Applied Sciences, 11(10), 1798-1810.

  • Fares, O., Al-Oqla, F., & Hayajneh, M. (2022). Revealing the intrinsic dielectric properties of mediterranean green fiber composites for sustainable functional products. Journal of Industrial Textiles, 51(5_suppl), 7732S-7754S. https://doi.org/10.1177/15280837221094648

  • Fares, O., Al-Oqla, F. M., & Hayajneh, M. T. (2019). Dielectric relaxation of mediterranean lignocellulosic fibers for sustainable functional biomaterials. Materials Chemistry and Physics, 229, 174-182. https://doi.org/10.1016/j.matchemphys.2019.02.095

  • Feito, N., Muñoz-Sánchez, A., Díaz-Álvarez, A., & Miguelez, M. H. (2019). Multi-objective optimization analysis of cutting parameters when drilling composite materials with special geometry drills. Composite Structures, 225, 111187. https://doi.org/10.1016/j.compstruct.2019.111187

  • Hayajneh, M. T., Mu’ayyad, M., & Al-Oqla, F. M. (2022). Mechanical, thermal, and tribological characterization of bio-polymeric composites: A comprehensive review. e-Polymers, 22(1), 641-663. https://doi.org/10.1515/epoly-2022-0062

  • Ilyas, R. A., Sapuan, S. M., Atiqah, A., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Nurazzi, N. M., Atikah, M. S. N., Ansari, M. N. M., Asyraf, M. R. M., Supian, A. B. M., & Ya, H. (2020). Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polymer Composites, 41(2), 459-467. https://doi.org/10.1002/pc.25379

  • Ismail, A. M., AL-Oqla, F. M., Risby, M. S., & Sapuan, S. M. (2022). On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: A systematic review. Carbon Letters, 32(3), 727-740. https://doi.org/10.1007/s42823-022-00323-z

  • Khan, T., Hameed Sultan, M. T. B., & Ariffin, A. H. (2018). The challenges of natural fiber in manufacturing, material selection, and technology application: A review. Journal of Reinforced Plastics and Composites, 37(11), 770-779. https://doi.org/10.1177/0731684418756

  • Nawafleh, N., & AL-Oqla, F. M. (2022a). Artificial neural network for predicting the mechanical performance of additive manufacturing thermoset carbon fiber composite materials. Journal of the Mechanical Behavior of Materials, 31(1), 501-513. https://doi.org/10.1515/jmbm-2022-0054

  • Nawafleh, N., & AL-Oqla, F. M. (2022b). An innovative fuzzy-inference system for predicting the mechanical behavior of 3D printing thermoset carbon fiber composite materials. The International Journal of Advanced Manufacturing Technology, 121(11), 7273-7286. https://doi.org/10.1007/s00170-022-09822-9

  • Nurazzi, N., Harussani, M., Aisyah, H., Ilyas, R., Norrrahim, M., Khalina, A., & Abdullah, N. (2021). Treatments of natural fiber as reinforcement in polymer composites—A short review. Functional Composites and Structures, 3(2), 024002. https://doi.org/10.1088/2631-6331/abff36

  • Rababah, M. (2011). A practical and optimal approach to CNC programming for five-axis grinding of the end-mill flutes [Unpublish doctoral thesis]. Concordia University.

  • Rababah, M. M., AL-Oqla, F. M., & Wasif, M. (2022). Application of analytical hierarchy process for the determination of green polymeric-based composite manufacturing process. International Journal on Interactive Design and Manufacturing (IJIDeM), 16(3), 943-954. https://doi.org/10.1007/s12008-022-00938-6

  • Razak, S. I. A., Rahman, W. A. W. A., Sharif, N. F. A., & Yahya, M. Y. (2012). Simultaneous numerical optimization of the mechanical and electrical properties of polyaniline coated kenaf fiber using response surface methodology: nanostructured polyaniline on natural fiber. Composite Interfaces, 19(7), 411-424. https://doi.org/10.1080/15685543.2012.757957

  • Rojas, C., Cea, M., Iriarte, A., Valdés, G., Navia, R., & Cárdenas-R, J. P. (2019). Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies, 20, e00102. https://doi.org/10.1016/j.susmat.2019.e00102

  • Sbayti, M., Bahloul, R., & Belhadjsalah, H. (2020). Efficiency of optimization algorithms on the adjustment of process parameters for geometric accuracy enhancement of denture plate in single point incremental sheet forming. Neural Computing and Applications, 32(13), 8829-8846. https://doi.org/10.1007/s00521-019-04354-y

  • Taraborrelli, L., Grant, R., Sullivan, M., Choppin, S., Spurr, J., Haake, S., & Allen, T. (2019). Materials have driven the historical development of the tennis racket. Applied Sciences, 9(20), 4352. https://doi.org/10.3390/app9204352

  • Toupe, J. L., Trokourey, A., & Rodrigue, D. (2015). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Processing analysis. Journal of Composite Materials, 49(11), 1355-1367. https://doi.org/10.1177/00219983145337

  • Verma, D., Gope, P., Singh, I., & Jain, S. (2015). Composites from Bagasse fibers, Its characterization and applications. In J. R. Hakeem., M. Jawaid., & O. Y. Alothman (Eds.) Agricultural biomass based potential materials (pp. 91-119). Springer.

  • Vijay, R., Manoharan, S., Vinod, A., Singaravelu, D. L., Sanjay, M., & Siengchin, S. (2019). Characterization of raw and benzoyl chloride treated Impomea pes-caprae fibers and its epoxy composites. Materials Research Express, 6(9), 095307. https://doi.org/10.1088/2053-1591/ab2de2

  • Vijay, R., Vinod, A., Singaravelu, D. L., Sanjay, M., & Siengchin, S. (2021). Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass-A potential reinforcement for lightweight polymeric applications. International Journal of Lightweight Materials and Manufacture, 4(1), 43-49. https://doi.org/10.1016/j.ijlmm.2020.06.008

  • Wegmann, S., Rytka, C., Diaz-Rodenas, M., Werlen, V., Schneeberger, C., Ermanni, P., Michaud, V. (2022). A life cycle analysis of novel lightweight composite processes: Reducing the environmental footprint of automotive structures. Journal of Cleaner Production, 330, 129808. https://doi.org/10.1016/j.jclepro.2021.129808

  • Yaghoobi, H., & Fereidoon, A. (2019). Thermal analysis, statistical predicting, and optimization of the flexural properties of natural fiber biocomposites using Box–Behnken experimental design. Journal of Natural Fibers, 16(7), 987-1005. https://doi.org/10.1080/15440478.2018.1447416

  • Yusof, F. M., Abd Rahim, M. K. H., Samsudin, A. S., Mohamad Nor, N. H., Ahmad, Z., & Halim, Z. (2016). Optimization of natural fiber composite parameter using Taguchi approach. Advanced Materials Research, 1133, 185-188. https://doi.org/10.4028/www.scientific.net/AMR.1133.185

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST(S)-0584-2023

Download Full Article PDF

Share this article

Recent Articles