e-ISSN 2231-8526
ISSN 0128-7680
Mokhamad Tirono and Suhariningsih
Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021
DOI: https://doi.org/10.47836/pjst.29.1.08
Keywords: Bacteria, biofilms, electric field, electroporation, reduction
Published on: 22 January 2021
Sterilization using high-intensity electric fields is detrimental to health if safety is inadequate, so it is necessary to study the possibility of sterilization using low-intensity electric fields. This study aims to determine the lowest electric field intensity and treatment time to deactivate the bacteria that make up the biofilms and explain the mechanism of inactivation. The study samples were biofilms from the bacteria Pseudomonas aeruginosa and Staphylococcus epidermidis grown on the catheter. The modeling formula was developed from the Pockels effect and the Weibull distribution with the treatment using a square pulse-shaped electric field with a pulse width of 50 µs and an intensity of 2.0-4.0 kV/ cm. The results showed that the threshold for irreversible electroporation of both samples occurred in the treatment using an electric field with an intensity of 3.5 kV/cm and 3.75 kV/ cm, respectively, where the size and type of Gram of bacteria influenced. Moreover, the time of the treatment had an effect when irreversible electroporation occurred. However, when there was reversible electroporation, the effect of treatment time on the reduction in the number of bacteria was not significant. Also, changes in conductivity affected the reduction in the number of bacteria when reversible electroporation occurred.
Akinlaja, J., & Sachs, F. (1998). The breakdown of cell membranes by electrical and mechanical stress. Biophysical Journal, 75(1), 247-254. doi: 10.1016/S0006-3495(98)77511-3
Alvarez, I., Pagan, R., Condon, S., & Raso, J. (2003). The influence of process parameters for the inactivation of Listeria monocyogenes by pulsed electric fields. International Journal of Food Microbiology, 87(1-2), 87-95. doi: https://doi.org/10.1016/S0168-1605(03)00056-4
Aslankoc, R., Gumral, N., Saygin, M., Senol, N., Asci, H., Cankara, F. N., & Comlekci, F. (2018). The impact of electric fields on testis physiopathology, sperm parameters and DNA integrity - The role of resveratrol. Andrologia, 50(4), 1-11. doi: 10.1111/and.12971
Bonetta, S., Bonetta, S., Bellero, M., Pizzichemi, M., & Carraro, E. (2014). Inactivation of Escherichia coli and Staphylococcus aureus by pulsed electric fields increases with higher bacterial population and with agitation of liquid medium. Journal of Food Protection, 77(7), 1219-1223. doi: 10.4315/0362-028X.JFP-13-487
Bunin, V. D., Ignatov, O. V., Guliy, O. I ., Zaitseva, I. S., Neil, D. O., & Ivnitskii, D. (2005). The electrooptical parameters of suspensions of Escherichia coli XL-1 cells interacting with helper phage M13K07. Microbiology, 74(2), 164-168.
Di, G., Gu, X., Lin, Q., Wu, S., & Kim, H. B. (2018). A comparative study on effects of static electric field and power frequency electric field on hematology in mice. Ecotoxicology and Environmental Safety, 166(September), 109-115. doi: 10.1016/j.ecoenv.2018.09.071
Diggle, S. P., & Whiteley, M. (2020). Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. Microbiology, 166(1), 30-33. doi: 10.1099/mic.0.000860
Eismann, M. T. (2012). Optical radiation and matter. In M. T. Eismann (Ed.), Hyperspectral remote sensing (pp. 37-82). Washington, USA: SPIE Press. doi: 10.1117/3.899758.ch2
Eriksson, J. (2011). Biofilm growth in strong electric fields (Master Thesis). KTH Royal Institute of Technology, Sweden.
Fangxia, S., Miaomiao, T., Hong, X., Zhencheng, X., & Maosheng, Y. (2013). Development of a novel conductance-based technology for. Environmental Chemistry, 58(4), 440-448. doi: 10.1007/s11434-012-5621-1
Galdiero, S., Falanga, A., Cantisani, M., Vitiello, M., Morelli, G., & Galdiero, M. (2013). Peptide-lipid interactions: experiments and applications. International Journal of Molecular Sciences, 14(9), 18758-18789. doi: 10.3390/ijms140918758
Gottenbos, B. (2001). Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 48(1), 7-13. doi: 10.1093/jac/48.1.7
Hajj, B., Pioufle, B. L., Osaki, T., & Suzuki, H. (2009). Electro-optical imaging microscopy of dye-doped artificial lipidic membranes. Biophysical Journal, 97(December), 2913-2921. doi: 10.1016/j.bpj.2009.08.055
Hohle, T. H., Franck, W. L., Stacey, G., & O’Brian, M. R. (2011). Bacterial outer membrane channel for divalent metal ion acquisition. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15390-15395. doi: 10.1073/pnas.1110137108
Huang, K.,Tian, H., Gai, L., & Wang, J. (2012). A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. Journal of Food Engineering, 111, 191-207. doi:10.1016/j.jfoodeng.2012.02.007
Huh, K., Oh, D., Son, S. Y., Yoo, H. J., Song, B., Cho, D. I. D., ... & Kim, S. J. (2016). Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle. Micro and Nano Systems Letters, 4(1), 1-9. doi: 10.1186/s40486-016-0026-6
Kakorin, S., & Neumann, E. (2002). Electrooptical relaxation spectrometry of membrane electroporation in lipid vesicles. A: Physicochemical and Engineering Aspects, 209(2-3), 147-165. doi: https://doi.org/10.1016/S0927-7757(02)00176-0
Kotnik, T., Rems, L., Tarek, M., & Miklavčič, D. (2019). Membrane electroporation and electropermeabilization: Mechanisms and Models. Annual Review of Biophysics, 48(1), 63-91. doi: 10.1146/annurev-biophys-052118-115451
Krysinski, E. P., Brown, L. J., & Marchisello, T. J. (1992). Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. Journal of Food Protection, 55(4), 246-251. doi: https://doi.org/10.4315/0362-028X-55.4.246
Lazǎr, V., & Chifiriuc, M. C. (2010). Medical significance and new therapeutical strategies for biofilm associated infections. Roumanian Archives of Microbiology and Immunology, 69(3), 125-138
Maria, M. G., Fatima, A. M., Teresa, R. S. B., & Cristina, L. M. S. (2011). On the use of the gompertz model to predict microbial thermal inactivation under isothermal and non-isothermal conditions. Food Engineering Reviews, 3, 17-25. doi: 10.1007/s12393-010-9032-2
Martinac, B., Saimi, Y., & Kung, C. (2008). Ion channels in microbes. Physiological Reviews, 88(4), 1449-1490. doi: 10.1152/physrev.00005.2008.Ion
Mescia, L., Chiapperino, M. A., Bia, P., Lamacchia, C. M., Gielis, J., & Caratelli, D. (2019, June 17-20). Multiphysics Modelling of Membrane Electroporation in Irregularly Shaped Cells. In 2019 Photonics & Electromagnetics Research Symposium-Spring (PIERS-Spring) (pp. 2992-2998). Rome, Italy. doi: 10.1109/PIERS-Spring46901.2019.9017428
Miklavčič, D. (2017). Handbook of electroporation. Cham, Switzerland: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-32886-7
Monfort, S., Saldaña, G., Condón, S., Raso, J., & Álvarez, I. (2012). Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiology, 30(2), 393-399. doi: 10.1016/j.fm.2012.01.004
Moran, J. L., Dingari, N. N., Garcia, P. A., & Buie, C. R. (2018). Numerical study of the effect of soft layer properties on bacterial electroporation. Bioelectrochemistry, 123, 261-272. doi: 10.1016/j.bioelechem. 2017.09.004
Pagán, R., & Mackey, B. (2000). Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential-and stationary-phase cells and variation among strains. Applied and Environmental Microbiology, 66(7), 2829-2834. doi: 10.1128/AEM.66.7.2829-2834.2000
Pavlin, M., Rebers, M., Pucihar, G., Hart, F. X., & Magjarevic, R. (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal, 88(June), 4378-4390. doi: 10.1529/biophysj.104.048975
Peleg, M. (2017). Modeling microbial inactivation by pulsed electric field. In D. Miklavcic (Ed.), Handbook of Electroporation (pp.1269-1286). Cham, Swetzerland: Springer International Publishing. doi: 10.1007/978-3-319-32886-7_43
Pliquett, U., Joshi, R. P., Sridhara, V., & Schoenbach, K. H. (2007). High electrical field effects on cell membranes. Bioelectrochemistry, 70(2), 275-282. doi: 10.1016/j.bioelechem.2006.10.004
Pogozheva, I. D., Tristram-Nagle, S., Mosberg, H. I., & Lomize, A. L. (2013). Structural adaptations of proteins to different biological membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(11), 2592-2608. doi: 10.1016/j.bbamem.2013.06.023
Puértolas, E., López, N., Condón, S., Raso, J., & Álvarez, I. (2009). Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology, 130(1), 49-55. doi: 10.1016/j.ijfoodmicro.2008.12.035
Qiu, X., Lee, Y. T., & Yung, P. T. (2014, August 26-30). A bacterial spore model of pulsed electric fields on spore morphology change revealed by simulation and SEM. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6822-6825). Chicago, IL, USA. doi: 10.1109/EMBC.2014.6945195
Ramaswamy, R., Ramachandran, R. P., & Gowrisree, V. (2019). High voltage pulsed electric field application using titanium electrodes for bacterial inactivation in unpurified water. Japan Journal of Food Engineering, 20(2), 63-70. doi: 10.11301/jsfe.19546
Rosin, J. M., & Kurrasch, D. M. (2018). In utero electroporation induces cell death and alters embryonic microglia morphology and expression signatures in the developing hypothalamus. Journal of Neuroinflammation, 15(1), 1-15. doi: 10.1186/s12974-018-1213-6
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. In T. J. Silhavy, D. Kahne & S. Walker (Eds.), Cold Spring Harbor perspectives in biology (pp. 1-16). New York, USA: Cold Spring Harbor Laboratory Press. doi: 10.1101/cshperspect.a000414
Silve, A., Leray, I., Poignard, C., & Mir, L. M. (2016). Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Scientific Reports, 6, 1-15. doi: https://doi.org/10.1038/srep19957
Singh, J., Singh, M., Singh, B., Nayak, M., & Ghanshyam, C. (2017). Comparative analyses of prediction models for inactivation of Escherichia coli in carrot juice by means of pulsed electric fields. Journal of Food Science and Technology, 54(6), 1538-1544. doi: 10.1007/s13197-017-2585-9.
Skulberg, K. R., Skyberg, K., Eduard, W., Goffeng, L. O., Vistnes, A. I., Levy, F., & Kjuus, H. (2001). Effects of electric field reduction in visual display units on skin symptoms. Scandinavian Journal of Work, Environment and Health, 27(2), 140-145. doi: 10.5271/sjweh.601. doi: 10.5271/sjweh.601.
Sweeney, D. C., Weaver, J. C., & Davalos, R. V. (2018). Characterization of cell membrane permeability in vitro part I : Transport behavior induced by single-pulse electric fields. Technology in Cancer Research & Treatment, 17, 1-15. doi: 10.1177/1533033818792491.
ISSN 0128-7680
e-ISSN 2231-8526