Home / Regular Issue / JST Vol. 29 (3) Jul. 2021 / JST-2540-2021


Electromechanical Characteristics of Core Free Folded Dielectric Electro-active Polymer Soft Actuator

Abdul Malek Abdul Wahab, Muhamad Azhan Anuar and Muhamad Sukri Hadi

Pertanika Journal of Social Science and Humanities, Volume 29, Issue 3, July 2021

DOI: https://doi.org/10.47836/pjst.29.3.47

Keywords: Active dynamic, core free, dielectric electro-active polymer, electromechanical, thin actuator

Published on: 31 July 2021

This paper investigates the active dynamic and electromechanical characteristics of a new thin folded dielectric electro-active polymer actuator developed by Danfoss PolyPower. The high voltage is supplied to the actuator during dynamic testing to identified the effect of the electrical field on dynamic characteristics. The electromechanical characteristics are investigated by varying the amplitude and frequency of the voltage supplied. The experimental results, such as natural frequency, amplitude response, and loss factor are presented to show the influence of such an electrical field on the characteristic of the actuator. There is a reduction of resonance frequency from 14 Hz to 12 Hz as voltage supply up to 2000 V. The actuating response of the actuator was subjected more to frequency rather than the amplitude of the voltage supplied. Hence, the results may guide the exploration of a new folded thin actuator as an active vibration controller.

  • Benslimane, M., Gravesen, P., & Sommer-Larsen, P. (2002). Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes. In Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD) (Vol. 4695, pp. 150-157). International Society for Optics and Photonics. https://doi.org/10.1117/12.475160

  • Berardi, U. (2013). Modelling and testing of a dielectic electro-active polymer (DEAP) actuator for active vibration control. Journal of Mechanical Science and Technology, 27(1), 1-7. https://doi.org/10.1007/s12206-012-0915-4

  • Berardi, U., Mace, B., Rustighi, E., & Sarban, R. (2010, June 13-15). Dynamic testing and modelling of DEAP push actuators. In International Conference and Exhibition on New Actuators and Drive Systems - Actuator 2010. Bremen, Germany

  • Bertoldi, K., & Gei, M. (2011). Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 59(1), 18-42. https://doi.org/10.1016/j.jmps.2010.10.001

  • Carpi, F., Chiarelli, P., Mazzoldi, A., & de Rossi, D. (2003). Electromechanical characterisation of dielectric elastomer planar actuators: Comparative evaluation of different electrode materials and different counterloads. Sensors and Actuators A: Physical, 107(1), 85-95. https://doi.org/10.1016/S0924-4247(03)00257-7

  • Carpi, F., & de Rossi, D. (2004). Dielectric elastomer cylindrical actuators: Electromechanical modelling and experimental evaluation. Materials Science and Engineering: C, 24(4), 555-562. https://doi.org/10.1016/j.msec.2004.02.005

  • Carpi, F., Frediani, G., Mannini, A., & De Rossi, D. (2008). Contractile and buckling actuators based on dielectric elastomers: devices and applications. In Advances in Science and Technology (Vol. 61, pp. 186-191). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AST.61.186

  • Hau, S., York, A., & Seelecke, S. (2016). High-force dielectric electroactive polymer (DEAP) membrane actuator. In Electroactive Polymer Actuators and Devices (EAPAD) 2016 (Vol. 9798, p. 97980I). International Society for Optics and Photonics. https://doi.org/10.1117/12.2220775

  • Kornbluh, R. D., Pelrine, R., Joseph, J., Heydt, R., Pei, Q., & Chiba, S. (1999, May). High-field electrostriction of elastomeric polymer dielectrics for actuation. In Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices (Vol. 3669, pp. 149-161). International Society for Optics and Photonics. https://doi.org/10.1117/12.349672

  • Li, Z., Sheng, M., Wang, M., Dong, P., Li, B., & Chen, H. (2018). Stacked dielectric elastomer actuator (SDEA): Casting process, modeling and active vibration isolation. Smart Materials and Structures, 27(7), Article 75023. https://doi.org/10.1088/1361-665X/aabea5

  • Molberg, M., Leterrier, Y., Plummer, C. J. G., Walder, C., Lowe, C., Opris, D. M., Nuesh, F. A., Bauer, S., & Manson, J. E. (2009). Frequency-dependent dielectric and mechanical behavior of elastomers for actuator applications. Journal of Applied Physics 106, Article 054112. https://doi.org/10.1063/1.3211957

  • Onyenucheya, B., Allen, J., Pierre, K., Zirnheld, J., & Burke, K. (2019). Dielectric Elastomers: An Investigation in Strain Dependent Electrostatic Pressure of Soft Compliant Dielectric. In 2019 IEEE Pulsed Power & Plasma Science (PPPS) (pp. 1-4). IEEE Conference Publication. https://doi.org/10.1109/PPPS34859.2019.9009996

  • Pelrine, R. E., Kornbluh, R. D., & Joseph, J. P. (1998). Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators, A: Physical, 64(1), 77-85. https://doi.org/10.1016/S0924-4247(97)01657-9

  • Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q., & Chiba, S. (2000). High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering C, 11(2), 89-100. https://doi.org/10.1016/S0928-4931(00)00128-4

  • Sarban, R., Jones, R. W., Mace, B. R., & Rustighi, E. (2011). A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation. Mechanical Systems and Signal Processing, 25(8), 2879-2891. https://doi.org/10.1016/j.ymssp.2011.06.004

  • Suo, Z. (2010). Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6), 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9

  • Tryson, M. J., Sarban, R., & Lorenzen, K. P. (2010). The dynamic properties of tubular DEAP actuators. In Electroactive Polymer Actuators and Devices (EAPAD) 2010 (Vol. 7642, p. 76420O). International Society for Optics and Photonics. https://doi.org/10.1117/12.847297

  • Wahab, A. M. A., Rustighi, E., & A., Z. (2020). Actuation and dynamic mechanical characteristics of a core free flat dielectric electro-active polymer soft actuator. Journal of Mechanical Engineering and Sciences, 14(4), 7396-7404. https://doi.org/10.15282/jmes.14.4.2020.08.0582

  • Wissler, M., Mazza, E., & Kovacs, G. M. (2007). Electromechanical coupling in cylindrical dielectric elastomer actuators. In Electroactive Polymer Actuators and Devices (EAPAD) 2007 (Vol. 6524, p. 652409). International Society for Optics and Photonics. https://doi.org/10.1117/12.714946

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles