Home / Regular Issue / JST Vol. 29 (4) Oct. 2021 / JST-2624-2021

 

A Comparative Study on the Larvicidal Effects of Piper sarmentosum (Kaduk) Leaves Extracts against Aedes aegypti

Amelia Najiha Othman, Nur Farah Suryani Zainudin, Uswatun Hasanah Zaidan and Suhaili Shamsi

Pertanika Journal of Science & Technology, Volume 29, Issue 4, October 2021

DOI: https://doi.org/10.47836/pjst.29.4.31

Keywords: Aedes aegypti, larvicidal activity, leaves extract, phytochemical content, Piper sarmentosum

Published on: 29 October 2021

Excessive use of synthetic larvicide has led to resistant strains of mosquito vectors and adverse ecological concerns globally. Hence, bioactive compounds from the plant have become a promising alternative to synthetic larvicide. Collectively, there is adequate evidence on the larvicidal effect of Piper sarmentosum (Kaduk). However, its leaves extract’s larvicidal effects in different solvent systems are still recondite against Aedes aegypti. The present study aims to investigate the larvicidal activity of the leaves extracts of P. sarmentosum in methanol (ME), ethyl acetate (EE), dichloromethane (DE) and hexane (HE), towards the larvae of A. aegypti, following the laboratory guidelines provided by the World Health Organization (WHO). HE shows a significantly highest larvicidal activity followed by DE, EE and ME, with LC50 and LC90 values of 39.04 and 87.84, 62.78 and 134.73, 114.70 and 169.20, 156.10 and 182.10 μg/mL, respectively. The HE was also found to contain the highest total phenolic and total flavonoid content (TPC and TFC), with various bioactive compounds at a higher percentage that exerts synergistic effects on the significantly improved larvicidal effect of HE compared to other solvent extracts. The morphological observation of A. aegypti larvae upon exposure to HE revealed a significant shrinkage of the internal structure of abdominal and siphon segments that indicates the acute toxicity effect of HE. The present study provides scientific-based evidence on the strongest larvicidal effect of HE from P. sarmentosum leaves extract towards A. aegypti for further development as a potential alternative for synthetic larvicide.

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.

  • Abidin, I. Z. Z., Fazry, S., Jamar, N. H., Dyari, H. R. E., Ariffin, Z. Z., Johari, A. N., Ashaari, N. S., Johari, N. A., Wahab, R. M. A., & Ariffin, S. H. Z. (2020). The effects of Piper sarmentosum aqueous extracts on zebrafish (Danio rerio) embryos and caudal fin tissue regeneration. Scientific Reports, 10(1), Article 14165. https://doi.org/10.1038/s41598-020-70962-7

  • Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., & Lightfoot, D. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), Article 42. https://doi.org/10.3390/plants6040042

  • Anadu, D. I., Aanaso, H. U., & Onyeka, O. N. D. (1996). Acute toxicity of the insect larvicide abate® (temephos) on the fish Tilapia melanopleura and the dragonfly larvae Neurocordelia virginiensis. Journal of Environmemtal Science and Health, 31(6), 1363-1375. https://doi.org/10.1080/03601239609373072

  • Anokwuru, C. P., Anyasor, G. N., Ajibaye, O., Fakoya, O., & Okebugwu, P. (2011). Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nature and Science, 9(7), 53-61.

  • Blainski, A., Lopes, G., & de Mello, J. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. https://doi.org/10.3390/molecules18066852

  • Chaithong, U., Choochote, W., Kamsuk, K., Jitpakdi, A., Chaiyasit, D., Champakaew, D., Tuetun, B., Pitasawat, B., & Tippawangkosol, P. (2006). Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). Journal of Vector Ecology, 31(1), 138-144. https://doi.org/10.3376/1081-1710(2006)31[138:LEOPPO]2.0.CO;2

  • Chanprapai, P., & Chavasiri, W. (2017). Antimicrobial activity from Piper sarmentosum Roxb. against rice pathogenic bacteria and fungi. Journal of Integrative Agriculture, 16(11), 2513-2524. https://doi.org/10.1016/S2095-3119(17)61693-9

  • De Almeida, S. J., Ferreira, R. P. M., Eiras, Á. E., Obermayr, R. P., & Geier, M. (2010). Multi-agent modeling and simulation of an Aedes aegypti mosquito population. Environmental Modelling & Software, 25(12), 1490-1507. https://doi.org/10.1016/j.envsoft.2010.04.021

  • de Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., dos Anjos Júnior, J. F., Ferreira, S. A., de Brito, E. S., & de Souza Neto, M. A. (2007). Chemical composition and larvicidal activity of essential oils from Piper species. Biochemical Systematics and Ecology, 35(10), 670-675. https://doi.org/10.1016/j.bse.2007.05.002

  • El-Hela, A. A., Abdel-Hady, N. M., & Dawoud, G. T. M. (2013). Phenolic content, antioxidant potential and Aedes aegyptii ecological friend larvicidal activity of some selected Egyptian plants. Journal of the Egyptian Society of Parasitology, 43(1), 215-234. https://doi.org/10.12816/0006379

  • Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge University Press.

  • Ghosh, A., Chowdhury, N., & Chandra, G. (2012). Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research, 135(5), 581-598. /pmc/articles/PMC3401688/

  • Guleria, S., & Tiku, A. K. (2009). Botanicals in pest management: Current status and future perspectives. In Integrated Pest Management: Innovation-Development Process (pp. 317-329). Springer. https://doi.org/10.1007/978-1-4020-8992-3_12

  • Haupenthal, S., Berg, K., Gründken, M., Vallicotti, S., Hemgesberg, M., Sak, K., Schrenk, D., & Esselen, M. (2017). In vitro genotoxicity of carcinogenic asarone isomers. Food and Function, 8(3), 1227-1234. https://doi.org/10.1039/c6fo01701k

  • Hematpoor, A., Liew, S. Y., Chong, W. L., Azirun, M. S., Lee, V. S., & Awang, K. (2016). Inhibition and larvicidal activity of phenylpropanoids from Piper sarmentosum on acetylcholinesterase against mosquito vectors and their binding mode of interaction. PLoS ONE, 11(5), 1-27. https://doi.org/10.1371/journal.pone.0155265

  • Intirach, J., Junkum, A., Lumjuan, N., Chaithong, U., Jitpakdi, A., Riyong, D., Wannasan, A., Champakaew, D., Muangmoon, R., Chansang, A., & Pitasawat, B. (2016). Antimosquito property of Petroselinum crispum (Umbellifereae) against the pyrethroid resistant and susceptible strains of Aedes aegypti (Diptera: Culicidae). Environmental Science and Pollution Research, 23(23), 23994-24008. https://doi.org/10.1007/s11356-016-7651-8

  • Ioset, J. R., Marston, A., Gupta, M. P., & Hostettmann, K. (2000). Antifungal and larvicidal compounds from the root bark of Cordia alliodora. Journal of Natural Products, 63(3), 424-426. https://doi.org/10.1021/np990393j

  • Leal, A. L. A. B., Machado, A. J. T., Bezerra, C. F., Inácio, C. E. S., Rocha, J. E., Sales, D. L., de Freitas, T. S., de Oliveira Almeida, W., do Amaral, W., da Silva, L. E., Ferriani, A. P., de Noronha Sales Maia, B. H. L., Morais-Braga, M. F. B., Barreto, H. M., & Coutinho, H. D. M. (2019). Chemical identification and antimicrobial potential of essential oil of Piper rivinoides kunth (BETIS-WHITE). Food and Chemical Toxicology, 131, Article 110559. https://doi.org/10.1016/j.fct.2019.06.006

  • Leal, L. F., Miguel, O. G., Silva, R. Z., Yunes, R. A., Santos, A. S., & Miguel, O. G. (2005). Chemical composition of Piper mikanianum essential oil. Journal of Essential Oil Research, 17(3), 316-317. https://doi.org/10.1080/10412905.2005.9698916

  • Lee, J. H., Cho, S., Paik, H. D., Choi, C. W., Nam, K. T., Hwang, S. G., & Kim, S. K. (2014). Investigation on antibacterial and antioxidant activities, phenolic and flavonoid contents of some Thai edible plants as an alternative for antibiotics. Asian-Australasian Journal of Animal Sciences, 27(10), 1461-1468. https://doi.org/10.5713/ajas.2013.13629

  • Mahmood, Q., Bilal, M., & Jan, S. (2014). Herbicides, pesticides, and plant tolerance: An overview. Emerging Technologies and Management of Crop Stress Tolerance, 1, 423-448. https://doi.org/10.1016/B978-0-12-800876-8.00017-5

  • Martins, R. C. C., Latorre, L. R., Sartorelli, P., & Kato, M. J. (2000). Phenylpropanoids and tetrahydrofuran lignans from Piper solmsianum. Phytochemistry, 55(7), 843-846. https://doi.org/10.1016/S0031-9422(00)00295-8

  • Ministry of Health Malaysia. (2020). Kenyataan Akhbar Ketua Pengarah Kesihatan Malaysia Situasi Semasa Deman Denggi, Zika dan Chikungunya Di Malaysia- ME 48 2020 [Press statement of the director general of health Malaysia: Current situation of Dengue Fever, Zika and Chikungunya in Malaysia- ME 48 2020]. Portal Rasmi Kementerian Kesihatan Malaysia.

  • Mohiddin, A., Lasim, A. M., & Zuharah, W. F. (2016). Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp. israelensis. Asian Pacific Journal of Tropical Biomedicine, 6(4), 295-300. https://doi.org/10.1016/j.apjtb.2016.01.006

  • Perumalsamy, H., Kim, N. J., & Ahn, Y. J. (2009). Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). Journal of Medical Entomology, 46(6), 1420-1423. https://doi.org/10.1603/033.046.0624

  • Qin, W., Huang, S., Li, C., Chen, S., & Peng, Z. (2010). Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae). Pesticide Biochemistry and Physiology, 96(3), 132-139. https://doi.org/10.1016/J.PESTBP.2009.10.006

  • Rahman, S. F. S. A., Sijam, K., & Omar, D. (2014). Chemical composition of Piper sarmentosum extracts and antibacterial activity against the plant pathogenic bacteria Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae. Journal of Plant Diseases and Protection, 121(6), 237-242. https://doi.org/10.1007/BF03356518

  • Reiter, P. (2001). Climate change and mosquito-borne disease. Environmental Health Perspectives, 109(1), 141-161. https://doi.org/10.1289/ehp.01109s1141

  • Ribeiro, N., Camara, C., & Ramos, C. (2016). Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus Californicus (McGregor). Chilean Journal of Agricultural Research, 76(1), 71-76. https://doi.org/10.4067/S0718-58392016000100010

  • Sakthivadivel, M., & Thilagavathy, D. (2003). Larvicidal and chemosterilant activity of the acetone fraction of petroleum ether extract from Argemone mexicana L. seed. Bioresource Technology, 89(2), 213-216. https://doi.org/10.1016/S0960-8524(03)00038-5

  • Salleh, W. M. N. H. W., Hashim, N. A., Ahmad, F., & Heng Yen, K. (2014). Anticholinesterase and antityrosinase activities of ten piper species from malaysia. Advanced Pharmaceutical Bulletin, 4(Suppl 2), 527-531. https://doi.org/10.5681/apb.2014.078

  • Seo, S. M., Jung, C. S., Kang, J., Lee, H. R., Kim, S. W., Hyun, J., & Park, I. K. (2015). Larvicidal and acetylcholinesterase inhibitory activities of apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. Journal of Agricultural and Food Chemistry, 63(45), 9977-9986. https://doi.org/10.1021/acs.jafc.5b03586

  • Shaalan, E. A. S., Canyon, D., Younes, M. W. F., Abdel-Wahab, H., & Mansour, A. H. (2005). A review of botanical phytochemicals with mosquitocidal potential. In Environment International (Vol. 31, Issue 8, pp. 1149-1166). Elsevier Ltd. https://doi.org/10.1016/j.envint.2005.03.003

  • Srivastava, S., Gupta, M. M., Prajapati, V., Tripathi, A. K., & Kumar, S. (2001). Insecticidal activity of myristicin from Piper mullesua. Pharmaceutical Biology, 39(3), 226-229. https://doi.org/10.1076/phbi.39.3.226.5933

  • Sukumar, K., Perich, M. J., & Boobar, L. R. (1991). Botanical derivatives in mosquito control: A review. Journal of the American Mosquito Control Association, 7(2), 210-237.

  • Suratman, S., Edwards, J. W., & Babina, K. (2015). Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Reviews on Environmental Health, 30(1), 65-79. https://doi.org/10.1515/REVEH-2014-0072

  • Tuekaew, J., Siriwatanametanon, N., Wongkrajang, Y., Temsiririrkkul, R., & Jantan, I. (2014). Evaluation of the antioxidant activities of Ya-hom Intajak, a Thai herbal formulation, and its component plants. Tropical Journal of Pharmaceutical Research, 13(9), 1477-1485. https://doi.org/10.4314/tjpr.v13i9.14

  • Uebel, T., Hermes, L., Haupenthal, S., Müller, L., & Esselen, M. (2020). α‐Asarone, β‐asarone, and γ‐asarone: Current status of toxicological evaluation. Journal of Applied Toxicology, 41(8), 1166-1179. https://doi.org/10.1002/jat.4112

  • Ugusman, A., Zakaria, Z., Hui, C. K., Nordin, N. A. M. M., & Mahdy, Z. A. (2012). Flavonoids of Piper sarmentosum and its cytoprotective effects against oxidative stress. EXCLI Journal, 11, 705-714. https://doi.org/10.17877/DE290R-10356

  • Vimaladevi, S., Mahesh, A., Dhayanithi, B., & Karthikeyan, N. (2012). Mosquito larvicidal efficacy of phenolic acids of seaweed Chaetomorpha antennina (Bory) Kuetz. against Aedes aegypti. Biologia, 67(1), 212-216. https://doi.org/10.2478/s11756-011-0152-9

  • Wang, Y., Lv, L., Yu, Y., Yang, G., Xu, Z., Wang, Q., & Cai, L. (2017). Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio). Chemosphere, 170, 61-67. https://doi.org/10.1016/j.chemosphere.2016.12.025.

  • World Health Organization. (2005). Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization.

  • World Health Organization. (2021). Dengue and severe dengue. World Health Organization.

  • Zaidan, U. H., Hamid, S. N. M., Yusof, M. F. M., Ahmad, S., Gani, S. S. A., & Shamsi, S. (2018). Chemical evaluation and antioxidant properties of extracts and essential oil from Stevia rebaudiana leaves. Malaysia Applied Biology, 47(2), 15-23.

  • Zaidan, U. H., Zen, N. I. M., Amran, N. A., Shamsi, S., & Gani, S. S. A. (2019). Biochemical evaluation of phenolic compounds and steviol glycoside from Stevia rebaudiana extracts associated with in vitro antidiabetic potential. Biocatalysis and Agricultural Biotechnology, 18, Article 101049. https://doi.org/10.1016/j.bcab.2019.101049

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2624-2021

Download Full Article PDF

Share this article

Recent Articles