e-ISSN 2231-8526
ISSN 0128-7680
S. M. Anisuzzaman, Collin G. Joseph and Fatin Nadiah Ismail
Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023
DOI: https://doi.org/10.47836/pjst.31.3.15
Keywords: Carrier agents, gum Arabic, hygroscopicity, maltodextrin, spray drying
Published on: 7 April 2023
The study aims to obtain spray-dried tomato powders with a high and effective product yield and enhanced powder quality. The experiment for this investigation entailed the use of several carrier agents, which were maltodextrin (MD) of 4-7 dextrose equivalents (DE), MD of 10-12 DE, and gum Arabic (GA), each in varied concentrations of 5% and 10% with spray drying inlet temperatures of 140°C, 150°C, and 160°C. Powder yield, bulk density, hygroscopicity, moisture content, water solubility, water absorption, color properties, particle size, and powder morphology were all evaluated in spray-dried tomato powders. The results revealed that the stability of the tomato powder is considerably better at high temperatures and concentrations (at 10%, 160oC), with MD 4-7 DE being the best carrier agent among the three tested carrier agents. According to the powder analysis, the product has a moisture content of 3.17 ± 0.29%, the highest yield percentage of 32.1%, a low bulk density of 0.2943 ± 0.01 g/cm3, the lowest hygroscopicity at 5.67± 0.58 %, a high water solubility index (WSI) at 89.98 ± 1.25%, a low water absorption index (WAI) at 6.22 ± 0.22%, an intermediate particle size of 24.73 µm, and color L*, a*,b* values at 31.59 ± 0.03, 11.62 ± 0.08 and 13.32 ± 0.12. The result showed that at higher temperatures and higher concentrations, the powder characteristics are more likely to have a higher yield, WSI, and larger particle size, as well as lower bulk density, hygroscopicity, moisture content, WAI, and color index.
Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109-116. https://doi.org/10.1016/j.foodchem.2016.09.103
Aderibigbe, O. R., Owolade, O. S., Egbekunle, K. O., Popoola, F. O., & Jiboku, O. O. (2018). Quality attributes of tomato powder as affected by different pre-drying treatments. International Food Research Journal, 25(3), 1126-1132.
AOAC. (2012). Official Methods of Analysis: Association of Official Analytical Chemists (19th ed.). https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1819676
Bhandari, B., & Howes, T. (2005). Relating the stickiness property of foods undergoing drying and dried products to their surface energetics. Drying Technology, 23(4), 781-797. https://doi.org/10.1081/DRT-200054194
Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanon pigments. Journal of Food Science, 65(7), 1248-1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x
Ciurzyńska, A., & Lenart, A. (2011). Freeze-drying - Application in food processing and biotechnology - A review. Polish Journal of Food and Nutrition Sciences, 61(3), 165-171. https://doi.org/10.2478/v10222-011-0017-5
Compaore, A., Dissa, A. O., Rogaume, Y., Putranto, A., Chen, X. D., Mangindaan, D., Zoulalian, A, Rémond, R., & Tiendrebeogo, E. (2017). Application of the reaction engineering approach (REA) for modeling of the convective drying of onion. Drying Technology, 35(4), 500-508. https://doi.org/10.1080/07373937.2016.1192189
Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111(1), 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010
Chegini, R. G., & Ghobadian, B. (2007). Spray dryer parameters for fruit juice drying. World Journal of Agricultural Sciences, 3(2), 230-236.
da Costa Ribeiro, A. S., Aguiar-Oliveira, E., & Maldonado, R. R. (2016). Optimization of osmoticdehydration of pear followed by conventional drying and their sensory quality. LWT - Food Science and Technology, 72, 407-415. https://doi.org/10.1016/j.lwt.2016.04.062
Eren, I., & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering, 79(1), 344-352. https://doi.org/10.1016/j.jfoodeng.2006.01.069
Garofulić, I. E., Zorić, Z., Pedisić, S., & Dragović-Uzelac, V. (2016). Optimization of sour cherry juice spray drying as affected by carrier material and temperature. Food Technology & Biotechnology, 54(4), 441-449. https://doi.org/10.17113/ftb.54.04.16.4601
Gouaou, I., Shamaei, S., Koutchoukali, M.S., Bouhelassa, M., Tsotsas, E., & Kharaghani, A. (2019). Impact of operating conditions on a single droplet and spray drying of hydroxypropylated pea starch: Process performance and final powder properties. Asia-Pacific Journal of Chemical Engineering, 14(1), Article e2268. https://doi.org/10.1002/apj.2268
Goula, A. M., & Adamopoulos, K. G. (2005). Stability of lycopene during spray drying of tomato pulp. LWT - Food Science and Technology, 38(5), 479-487. https://doi.org/10.1016/j.lwt.2004.07.020
Goula, A. M., & Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Drying Technology, 26(6), 714-725. https://doi.org/10.1080/07373930802046369
Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2006). Spray drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. Journal of Food Science, 71(5), E209-E217. http://dx.doi.org/10.1111/j.1750-3841.2006.00036.x
Haque, M., & Adhikari, B. (2014). Drying and denaturation of proteins in spray drying process. In A. S. Mujumdar (Ed.), Handbook of Industrial Drying (pp. 971-983). CRC Press.
Hii C. L., Ong S. P., Yap J. Y., Putranto A., & Mangindaan, D. (2021). Hybrid drying of food and bioproducts: A review. Drying Technology, 39(11), 1554-1576. https://doi.org/10.1080/07373937.2021.1914078
Ismail, M. H., Khan, K. A., Ngadisih, N., Irie M, Ong S. P, Hii, C. L., & Law, C. L. (2020). Two-step falling rate in the drying kinetics of rice noodle subjected to pre-treatment and temperature. Journal of Food Processing and Preservation, 44(11), Article e14849. https://doi.org/10.1111/jfpp.14849
Jafari, S., Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59-65. https://doi.org/10.1016/j.powtec.2017.01.070
Jittanit, W., Niti-Att, S., & Techanuntachikul, O. (2010). Study of spray drying of pineapple juice using maltodextrin as an adjunct. Chiang Mai Journal of Science, 36(3), 498-506.
Jittanit, W., Chantara-In, M., Deying, T., & Ratanavong, W. (2011). Production of tamarind powder by drum dryer using maltodextrin and Arabic gum as adjuncts. Songklanakarin Journal of Science and Technology, 33(1), 33-41.
Kwapinska, M., & Zbicinski, I. (2005). Prediction of final product properties after cocurrent spray drying. Drying Technology, 23(8), 1653-1665. https://doi.org/10.1081/DRT-200065075
Lee, J. K. M., Taip, F. S., & Abdullah, Z. (2018). Effectiveness of additives in spray drying performance: A review. Food Research, 2(6), 486-499. https://doi.org/10.26656/FR.2017.2(6).134
Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., & Xu, C. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 36, 1160-1163. https://doi.org/10.1038/nbt.4273
Martínez-Huélamo, M., Vallverdú-Queralt, A., Di Lecce, G., Valderas-Martínez, P., Tulipani, S., Jáuregui, O., Escribano-Ferrer, E., Estruch, R, Illan, M., & Lamuela-Raventós, R. M. (2016). Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial. Molecular Nutrition & Food Research, 60(7), 1578-1589. https:// doi.org/10.1002/mnfr.201500820
Muzaffar, K., Dinkarrao B. V., & Kumar, P. (2016) Optimization of spray drying conditions for production of quality pomegranate juice powder. Cogent Food & Agriculture, 2, 1-9. https://doi.org/10.1080/23311932.2015.1127583
Muzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness problem associated with spray drying of sugar and acid rich foods: A mini review. Journal of Nutrition & Food Sciences, S12:003, 1-3. https://doi.org/10.4172/2155-9600.1000S12003
Nowak, D., & Jakubczyk, E. (2020). The freeze-drying of foods - The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods, 9(10), Article 1488. https://doi.org/10.3390/foods9101488
Oliveira, D. M., Clemente, E., & da Costa, J. M. (2012). Hygroscopic behavior and degree of caking of Grugru palm (Acrocomia aculeata) powder. Journal of Food Science and Technology, 51(10), 2783-2789. https://doi.org/10.1007/s13197-012-0814-9
Osman, A. F. A., & Endut, N. (2009). Spray drying of roselle-pineapple juice effects of inlet temperature and maltodextrin on the physical properties. In Second International Conference on Environmental and Computer Science (pp. 267-270). IEEE Publishing. https://doi.org/10.1109/ICECS.2009.91
Patel, K. C., & Chen, X. D. (2008). Sensitivity analysis of the reaction engineering approach to modeling spray drying of whey proteins concentrate. Drying Technology, 26(11), 1334-1343. https://doi.org/10.1080/07373930802331019
Phisut, N. (2012). Spray drying technique of fruit juice powder: Some factors influencing properties of product. International Food Research Journal, 19(4), 1297-1306.
Phoungchandang, S., & Sertwasana, A. (2010). Spray-drying of ginger juice and physicochemical properties of ginger powders. ScienceAsia, 36, 40-45. http://dx.doi.org/10.2306/scienceasia1513-1874.2010.36.040
Pourashouri, P., Shabanpour, B., Razavi, S., Jafari, S., Shabani, A., & Aubourg, S. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food and Bioprocess Technology, 7, 2354-2365. https://doi/10.1007/s11947-013-1241-2
Pu, H., Li, Z., Hui, J., & Raghavan, G. S. V. (2016). Effect of relative humidity on microwave drying of carrot. Journal of Food Engineering, 190, 167-175. https://doi.org/10.1016/j.jfoodeng.2016.06.027
Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L., & Barone, A. (2014). Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of Inflammation, 2014, Article 139873. https://doi.org/10.1155/2014/139873
Sabhadinde, V. N. (2014). The physicochemical and storage properties of spray dried orange juice powder. Indian Journal of Fundamental and Applied Life Sciences, 4(4), 153-159.
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49-67. https://doi.org/10.1016/j.tifs.2017.05.006
Shrestha, A. K., Ua-arak, T., Adhikari, B. R., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measures by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10(3), 661-673. https://doi.org/10.1080/10942910601109218
Souza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C., & Tonon, R.V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT - Food Science and Technology, 91, 286-292. https://doi.org/10.1016/j.lwt.2018.01.053
Sudeep, G., Indira T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: Effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96(2), 222-228. https://doi.org/10.1016/j.jfoodeng.2009.07.016
Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. https://doi.org/10.1016/j.ultsonch.2016.06.030
Tonon, V. R., Brabet, C., & Hubinger, M. (2008). Influence of process conditions on the physicochemical properties of acai powder produced by spray drying. Journal of Food Engineering, 88(3), 411-418. http://dx.doi.org/10.1016/j.jfoodeng.2008.02.029
Tonon, V. R., Brabet, C., & Hubinger, M. (2011). Spray drying of acai juice: Effect of inlet temperature and type of carrier agent. Journal of Food Processing and Preservation, 35(5), 691-700. http://dx.doi.org/10.1111/j.1745-4549.2011.00518.x
Uyar, R., Bedane, T. F., Erdogdu, F., Palazoglu, T. K., Farag, K. W., & Marra, F. (2015). Radio-frequency thawing of food products - A computational study. Journal of Food Engineering, 146, 163-171. https://doi.org/10.1016/j.jfoodeng.2014.08.018
Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Characteristics of bovine lactoferrin powders produced through spray and freeze-drying processes. International Journal of Biological Macromolecules, 95, 985-994. https://doi.org/10.1016/j.ijbiomac.2016.10.087
Ziaforoughi, A., & Esfahani, J. A. (2016). A salient reduction of energy consumption and drying time in a novel PV-solar collector-assisted intermittent infrared dryer. Solar Energy, 136, 428-436. https://doi.org/10.1016/j.solener.2016.07.025
Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680. https://doi.org/10.1016/j.foodchem.2016.06.003
Zhu, C., Shoji, Y., McCray, S., Burke M, Hartman, C. E., Chichester, J. A., Breit, J., Yusibov, V., Chen, D., & Lal, M. (2014). Stabilization of HAC1 influenza vaccine by spray drying: Formulation development and process scale-up. Pharmaceutical Research, 31, 3006-3018. https://doi.org/10.1007/s11095-014-1394-3
ISSN 0128-7680
e-ISSN 2231-8526