e-ISSN 2231-8526
ISSN 0128-7680
Yew Seng Leow, Norhafizah Abdullah, Dayang Radiah Awang Biak, Nur Syakina Jamali Rozita Rosli and Huey Fang Teh
Pertanika Journal of Science & Technology, Volume 31, Issue 2, March 2023
DOI: https://doi.org/10.47836/pjst.31.2.05
Keywords: B. subtilis Natto, biosurfactant production, fermentation, OFAT analysis
Published on: 20 March 2023
Biosurfactants are microbial amphiphiles produced as primary metabolites by varieties of microorganisms. They are preferred over chemically derived surfactants owing to their intrinsic properties, such as superior environmental compatibility, biodegradability, anti-inflammatory and antimicrobial activity, and higher tolerance towards extreme environmental conditions such as temperature, salinity, and pH levels. However, commercial production of biosurfactants is still lacking. The main reason for this is the low yields obtained from fermentation processes, which causes them to be unable to compete compared to chemical surfactants. The present study conducted a one-factor-at-a-time (OFAT) analysis on fermentation conditions to enhance biosurfactant yield from a probiotic strain, Bacillus subtilis Natto. The fermentation was conducted by varying parameters such as nitrogen source, vegetable oils, inoculum size, amino acids, and pH of the fermentation medium. Results showed a significant improvement of 45% in biosurfactant production from B. subtilis Natto when the initial pH of the fermentation medium was adjusted to pH 6.8, urea as the nitrogen source, inoculum size of 6% v/v and the addition of palm olein at a concentration of 2% v/v as a substrate in the fermentation medium.
Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A. H. (2008). Optimization of surfactin production by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 150(3), 305-325. https://doi.org/10.1007/s12010-008-8155-x
Anjum, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology, 213, 262-269. https://doi.org/10.1016/j.biortech.2016.02.091
Balan, S. S., Kumar, C. G., & Jayalakshmi, S. (2017). Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiological Research, 194, 1-9. https://doi.org/10.1016/j.micres.2016.10.005
Banat, I. M., De Rienzo, M. A. D., & Quinn, G. A. (2014). Microbial biofilms: Biosurfactants as antibiofilm agents. Applied Microbiology and Biotechnology, 98(24), 9915-9929. https://doi.org/10.1007/s00253-014-6169-6
Bertrand, B., Martínez-Morales, F., Rosas-Galván, N. S., Morales-Guzmán, D., & Trejo-Hernández, M. R. (2018). Statistical design, a powerful tool for optimizing biosurfactant production: A review. Colloids and Interfaces, 2(3), Article 36. https://doi.org/10.3390/colloids2030036
Bhattacharya, B., Ghosh, T. K., & Das, N. (2017). Application of bio-surfactants in cosmetics and pharmaceutical industry. Scholars Academic Journal of Pharmacy (SAJP), 6(7), 320-329. https://doi.org/10.21276/sajp
Biniarz, P., Coutte, F., Gancel, F., & Łukaszewicz, M. (2018). High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microbial Cell Factories, 17(1), 1-18. https://doi.org/10.1186/s12934-018-0968-x
Cao, X. H., Liao, Z.Y., Wang, C. L., Yang, W. Y., & Lu, M. F. (2009). Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Brazilian Journal of Microbiology, 40(2), 373-379. https://doi.org/10.1590/s1517-83822009000200030
Chen, H. L., & Juang, R. S. (2008). Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochemical Engineering Journal, 38(1), 39-46. https://doi.org/10.1016/j.bej.2007.06.003
Chen, W. C., Juang, R. S., & Wei, Y. H. (2015). Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal, 103, 158-169. https://doi.org/10.1016/j.bej.2015.07.009
Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53(2), 224-229. https://doi.org/10.1128/aem.53.2.224-229.1987
Das, A. J., & Kumar, R. (2019). Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environmental Technology and Innovation, 16, Article 100450. https://doi.org/10.1016/j.eti.2019.100450
de Sousa, M., Dantas, I. T., Felix, A. K. N., de Sant’ana, H. B., Melo, V. M. M., & Gonçalves, L. R. B. (2014). Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57(2), 295-301. https://doi.org/10.1590/S1516-89132014000200019
Dobler, L., Vilela, L. F., Almeida, R. V., & Neves, B. C. (2016). Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 33(1), 123-135. https://doi.org/10.1016/j.nbt.2015.09.005
Donio, M. B. S., Ronica, S. F. A., Viji, V. T., Velmurugan, S., Jenifer, J. A., Michaelbabu, M., & Citarasu, T. (2013). Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pacific Journal of Tropical Medicine, 6(11), 876-883. https://doi.org/10.1016/S1995-7645(13)60156-X
Eswari, J. S., Anand, M., & Venkateswarlu, C. (2016). Optimum culture medium composition for lipopeptide production by Bacillus subtilis using response surface model-based ant colony optimization. Sadhana, 41(1), 55-65. https://doi.org/10.1007/s12046-015-0451-x
Fanaei, M., & Emtiazi, G. (2018). Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. Journal of Molecular Liquids, 268, 707-714. https://doi.org/10.1016/j.molliq.2018.07.103
Felix, A. K. N., Martins, J. J. L., Lima Almeida, J. G., Giro, M. E. A., Cavalcante, K. F., Maciel Melo, V. M., Loiola Pessoa, O. D., Ponte Rocha, M. V., Rocha Barros Gonçalves, L., & Saraiva de Santiago Aguiar, R. (2019). Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces, 175(July 2018), 256-263. https://doi.org/10.1016/j.colsurfb.2018.11.062
Ferraz, C., De Araújo, Á. A., & Pastore, G. M. (2002). The influence of vegetable oils on biosurfactant production by Serratia marcescens. Applied Biochemistry and Biotechnology, 98(1), 841-847. https://doi.org/10.1385/abab:98-100:1-9:841
Hentati, D., Chebbi, A., Hadrich, F., Frikha, I., Rabanal, F.,Sayadi, S., Manresa, A., & Chamkha, M. (2019). Production and characterization of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicology and Environmental Safety, 167, 441-449. https://doi.org/10.1016/j.ecoenv.2018.10.036
Hirata, Y., Igarashi, K., Ueda, A., & Quan, G. L. (2021). Enhanced sophorolipid production and effective conversion of waste frying oil using dual lipophilic substrates. Bioscience, Biotechnology and Biochemistry, 85(7), 1763-1771. https://doi.org/10.1093/bbb/zbab075
Ibrar, M., & Zhang, H. (2020). Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. Science of the Total Environment, 714, Article 136400. https://doi.org/10.1016/j.scitotenv.2019.136400
Jahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Advances in Colloid and Interface Science, 275, Article 102061. https://doi.org/10.1016/j.cis.2019.102061
Janek, T., Łukaszewicz, M., Rezanka, T., & Krasowska, A. (2010). Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technology, 101(15), 6118-6123. https://doi.org/10.1016/j.biortech.2010.02.109
Jaysree, R. C., Basu, S., Singh, P. P., Ghosal, T., Patra, P. A., Keerthi, Y., & Rajendran, N. (2011). Isolation of biosurfactant producing bacteria from environmental samples. Pharmacologyonline, 3, 1427-1433. https://doi.org/10.1002/abio.370110405
Joe, M. M., Bradeeba, K., Parthasarathi, R., Sivakumaar, P. K., Chauhan, P. S., Tipayno, S., Benson, A., & Sa, T. (2012). Development of surfactin based nanoemulsion formulation from selected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 172-180. https://doi.org/10.1016/j.jtice.2011.08.008
Khondee, N., Tathong, S., Pinyakong, O., Müller, R., Soonglerdsongpha, S., Ruangchainikom, C., Tongcumpou, C., & Luepromchai, E. (2015). Lipopeptide biosurfactant production by chitosan-immobilized Bacillus sp. GY19 and their recovery by foam fractionation. Biochemical Engineering Journal, 93, 47-54. https://doi.org/10.1016/j.bej.2014.09.001
Kim, H. S., Yoon, B. D., Lee, C. H., Suh, H. H., Oh, H. M., Katsuragi, T., & Tani, Y. (1997). Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Bioengineering, 84(1), 41-46. https://doi.org/10.1016/S0922-338X(97)82784-5
Kiran, G. S., Thomas, T. A., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource Technology, 101(7), 2389-2396. https://doi.org/10.1016/j.biortech.2009.11.023
Konishi, M., Morita, T., Fukuoka, T., Imura, T., Uemura, S., Iwabuchi, H., & Kitamoto, D. (2018). Efficient production of acid-form sophorolipids from waste glycerol and fatty acid methyl esters by Candida floricola. Journal of Oleo Science, 67(4), 489-496. https://doi.org/10.5650/jos.ess17219
Korai, A. G., Ameer, Y., Asif, S., Habib, H., Abbasi, M. H., Akhtar, R. M., Rasheed, M. A., Salahuddin, Tariq, A., & Awais, H. (2014). Biosurfactant production by Pseudomonas aeruginosa strains on 4 ml of inoculum size. Pakistan Journal of Medical and Health Sciences, 8(1), 21-24.
Li, E., & De Orduña, R. M. (2010). A rapid method for the determination of microbial biomass by dry weight using a moisture analyser with an infrared heating source and an analytical balance. Letters in Applied Microbiology, 50(3), 283-288. https://doi.org/10.1111/j.1472-765X.2009.02789.x
Liu, J. F., Yang, J., Yang, S. Z., Ye, R. Q., & Mu, B. Z. (2012). Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 166(8), 2091-2100. https://doi.org/10.1007/s12010-012-9636-5
Liu, K., Sun, Y., Cao, M., Wang, J., Lu, J. R., & Xu, H. (2020). Rational design, properties, and applications of biosurfactants: A short review of recent advances. Current Opinion in Colloid and Interface Science, 45, 57-67. https://doi.org/10.1016/j.cocis.2019.12.005
Liu, X. (2020). Microbial technology for the sustainable development of energy and environment. Biotechnology Reports, 27, Article e00486. https://doi.org/10.1016/j.btre.2020.e00486
Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., & Imanaka, T. (1993). A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology, 175(20), 6459-6466. https://doi.org/10.1128/jb.175.20.6459-6466.1993
Moshtagh, B., Hawboldt, K., & Zhang, B. (2018). Optimization of biosurfactant production by Bacillus subtilis N3-1P using the brewery waste as the carbon source. Environmental Technology, 40(25), 3371-3380. https://doi.org/10.1080/09593330.2018.1473502
Nalini, S., & Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 16(2), 108-115. https://doi.org/10.1016/j.aasci.2017.11.002
Parthipan, P., Preetham, E., Machuca, L. L., Rahman, P. K. S. M., Murugan, K., & Rajasekar, A. (2017). Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Frontiers in Microbiology, 8, 1-14. https://doi.org/10.3389/fmicb.2017.00193
Pecci, Y., Rivardo, F., Martinotti, M. G., & Allegrone, G. (2010). LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. Journal of Mass Spectrometry, 45(7), 772-778. https://doi.org/10.1002/jms.1767
Purwasena, I. A., Astuti, D. I., & Utami, S. G. (2020). Nitrogen optimization on rhamnolipid biosurfactant production from Pseudoxanthomonas sp. G3 and its preservation techniques. Sains Malaysiana, 49(9), 2119-2127. https://doi.org/10.17576/jsm-2020-4909-10
Saimmai, A., Onlamool, T., Sobhon, V., & Maneerat, S. (2013). An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand. World Journal of Microbiology and Biotechnology, 29(1), 87-102. https://doi.org/10.1007/s11274-012-1161-8
Santos, A. P. P., Silva, M. D. S., Costa, E. V. L., Rufino, R. D., Santos, V. A., Ramos, C. S., Sarubbo, L. A., & Porto, A. L. F. (2018). Production and characterization of a biosurfactant produced by Streptomyces sp. DPUA 1559 isolated from lichens of the Amazon region. Brazilian Journal of Medical and Biological Research, 51(2), 1-10. https://doi.org/10.1590/1414-431x20176657
Sharma, R., Singh, J., & Verma, N. (2018). Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatalysis and Agricultural Biotechnology, 16, 132-139. https://doi.org/10.1016/j.bcab.2018.07.028
Singh, R., Glick, B. R., & Rathore, D. (2018). Biosurfactants as a biological tool to increase micronutrient availability in soil: A review. Pedosphere, 28(2), 170-189. https://doi.org/10.1016/S1002-0160(18)60018-9
Sun, D., Liao, J., Sun, L., Wang, Y., Liu, Y., Deng, Q., Zhang, N., Xu, D., Fang, Z., Wang, W., & Gooneratne, R. (2019). Effect of media and fermentation conditions on surfactin and iturin homologues produced by Bacillus natto NT-6: LC–MS analysis. AMB Express, 9(1), Article 120. https://doi.org/10.1186/s13568-019-0845-y
Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2008). Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World Journal of Microbiology and Biotechnology, 24(7), 917-925. https://doi.org/10.1007/s11274-007-9609-y
Varvaresou, A., & Iakovou, K. (2015). Biosurfactants in cosmetics and biopharmaceuticals. Letters in Applied Microbiology, 61(3), 214-223. https://doi.org/10.1111/lam.12440
Vigneshwaran, C., Sivasubramanian, V., Vasantharaj, K., Krishnanand, N., & Jerold, M. (2018). Potential of Brevibacillus sp. AVN 13 isolated from crude oil contaminated soil for biosurfactant production and its optimization studies. Journal of Environmental Chemical Engineering, 6(4), 4347-4356. https://doi.org/10.1016/j.jece.2018.06.036
Youssef, N., Simpson, D. R., McInerney, M. J., & Duncan, K. E. (2013). In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. International Biodeterioration and Biodegradation, 81, 127-132. https://doi.org/10.1016/j.ibiod.2012.05.010
Yuliani, H., Perdani, M. S., Savitri, I., Manurung, M., Sahlan, M., Wijanarko, A., & Hermansyah, H. (2018). Antimicrobial activity of biosurfactant derived from Bacillus subtilis C19. Energy Procedia, 153, 274-278. https://doi.org/10.1016/j.egypro.2018.10.043
Zhang, J., Xue, Q., Gao, H., Lai, H., & Wang, P. (2016). Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microbial Cell Factories, 15(1), 1-11. https://doi.org/10.1186/s12934-016-0574-8
Zhang, W., Zhang, X., & Cui, H. (2015). Isolation, fermentation optimization and performance studies of a novel biosurfactant producing strain Bacillus amyloliquefaciens. Chemical and Biochemical Engineering Quarterly, 29(3), 447-456. https://doi.org/10.15255/CABEQ.2014.2037
ISSN 0128-7680
e-ISSN 2231-8526