PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (5) Aug. 2023 / JST-3764-2022

 

The Digestibility and Bacterial Growth Rates of Microwave Treated Sago (Metroxylon sagu) Starch

Mohd Alhafiizh Zailani, Hanisah Kamilah, Ahmad Husaini, Awang Zulfikar Rizal Awang Seruji and Shahrul Razid Sarbini

Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.10

Keywords: Functional food, glycaemic, prebiotic, resistant starch, starch modification

Published on: 31 July 2023

Sago starch is rich in resistant starch (RS) but less utilised than other commercial starches. Hence, modification is essential to give an add-on value to the starch. Thus, the objective was to determine the influence of microwave heat treatment (MHT) on the digestibility and probiotic growth rates of sago starch. In this study, the starch was treated by MHT for durations of up to 20 min. The digestibility and bacterial growth rates increase as the treatment duration increases to 15 min. It implies the potential of the MHT in increasing the digestibility of the sago starch and improving its prebiotic property based on probiotic growth rates.

  • Achudan, S. N., Mohamed, A. M., Rashid, R. S., & Mittis, P. (2020). Yield and physicochemical properties of starch at different sago palm stages. Materials Today: Proceedings, 31, 122-126. https://doi.org/10.1016/j.matpr.2020.01.341

  • Arshad, N., Zaman, S., Rawi, M., & Sarbini, S. (2018). Resistant starch evaluation and in vitro fermentation of lemantak (native sago starch), for prebiotic assessment. International Food Research Journal, 25(3), 951-957.

  • Chen, Y., Yang, Q., Xu, X., Qi, L., Donga, Z., Luo, Z., Lu, X., & Peng, X. (2017). Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydrate Polymers, 177, 232-240. https://doi.org/10.1016/j.carbpol.2017.08.121

  • Chung, H. J., Shin, D. H., & Lim, S. T. (2008). In vitro starch digestibility and estimated glycemic index of chemically modified corn starch. Food Research International, 41, 579-585. https://doi.org/10.1016/j.foodres.2008.04.006

  • Fan, M., Huang, Q., Zhong, S., Li, X., Xiong, S., Xie, J., Yin, T., Zhang, B., & Zhao, S. (2019). Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviours of modified starches with different crosslinking and acetylation degree. Food Hydrocolloids, 96, 604-616. https://doi.org/10.1016/j.foodhyd.2019.05.045

  • Khan, A., Ali, H., Rehman, U. U., Belduz, A. O., Bibi, A., Abdurahman, M. A., Shah, A. A., Badshah, M., Hasan, F., Kilic, A. O., Ullah, A., Jahan, S., Ur Rehman, M. M., Mansoor, R., & Khan, S. (2022). Prebiotic potential of enzymatically prepared resistant starch in reshaping gut microbiota and their respond to body physiology. Plos One, 17(5), Article e0267318. https://doi.org/10.1371/journal.pone.0267318

  • Li, H., Wang, R., Liu, J., Zhang, Q., Li, G., Shan, Y., & Ding, S. (2020). Effects of heat-moisture and acid treatments on the structural, physicochemical, and in vitro digestibility properties of lily starch. International Journal of Biological Macromolecules, 148, 956-968. https://doi.org/10.1016/j.ijbiomac.2020.01.181

  • Loo, S. W., Tan, Z. N., Karim, A. A., Hani, N. M., & Rosma, A. (2010). Fermentation of Metroxylon sagu resistant starch type III by Lactobacillus sp. and Bifidobacterium bifidum. Journal of Agricultural and Food Chemistry, 58(4), 2274-2278. https://doi.org/10.1021/jf903820s

  • Okolie, C. L., Mason, B., Mohan, A., Pitts, N., & Udenigwe, C. C. (2019). The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum. Food Hydrocolloids, 90, 462-471. https://doi.org/10.1016/j.foodhyd.2018.12.053

  • Oyeyinka, S. A., Umaru, E., Olatunde, S. J., & Joseph, J. K. (2019). Effect of short microwave heating time in the physicochemical and functional properties of Bambara groundnut starch. Food Bioscience, 28, 36-41. https://doi.org/10.1016/j.fbio.2019.01.005

  • Singh, A. V., & Nath, L. K. (2012). Synthesis and evaluation of physicochemical properties of cross-linked sago starch. International Journal of Biological Macromolecules, 50, 14-18. https://doi.org/10.1016/j.ijbiomac.2011.09.003

  • Sondari, D. (2018). Modification of sago starch for edible coating. IOP Conference Series: Materials Science and Engineering, 543, Article 012013. https://doi.org/10.1088/1757-899X/543/1/012013

  • Wang, M., Chen, X., Zhou, L., Li, Y., Yang, J., Ji, N., Xiong, L., & Sun, Q. (2022). Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum. LWT - Food Science and Technology, 154, Article 112572. https://doi.org/10.1016/j.lwt.2021.112572

  • Wang, M., Sun, M., Zhang, Y., Chen, Y., Wu, Y., & Ouyang, J. (2019). Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chemistry, 298, Article 125015. https://doi.org/10.1016/j.foodchem.2019.125015

  • Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., & Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids, 69, 473-482. https://doi.org/10.1016/j.foodhyd.2017.03.011

  • Ying, B. Z., Kamilah, H., Karim, A. A., & Utra, U. (2020). Effects of heat-moisture and alkali treatment on the enzymatic hydrolysis of porous sago (Metroxylon sagu) starch. Journal of Food Processing and Preservation, 44(5), Article e14419. https://doi.org/10.1111/jfpp.14419

  • Zailani, M. A., Kamilah, H., Husaini, A., & Sarbini, S. R. (2021). Physicochemical properties of microwave heated sago (Metroxylon sagu) starch. CyTA - Journal of Food, 19(1), 596-605. https://doi.org/10.1080/19476337.2021.1934550

  • Zaman, S. A., & Sarbini, S. R. (2015). The potential of resistant starch as prebiotic. Critical Reviews in Biotechnology, 36(3), 578-584. https://doi.org/10.3109/07388551.2014.993590

  • Zhu, F. (2019). Recent advances in modifications and applications of sago starch. Food Hydrocolloids, 96, 412-423. https://doi.org/10.1016/j.foodhyd.2019.05.035