Home / Regular Issue / JST Vol. 31 (3) Apr. 2023 / JST-3830-2022


Discovery of Mycobacterium tuberculosis CYP121 New Inhibitor via Structure-based Drug Repurposing

Tarek El Moudaka, Priya Murugan, Mohd Basyaruddin Abdul Rahman and Bimo Ario Tejo

Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023

DOI: https://doi.org/10.47836/pjst.31.3.21

Keywords: CYP121, drug repositioning, drug resistance, molecular docking, molecular dynamics, tuberculosis, virtual screening

Published on: 7 April 2023

Tuberculosis (TB) remains a serious threat to human health with the advent of multi-drug resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). The urge to find novel drugs to deal with the appearance of drug-resistant TB and its variants is highly needed. This study aims to find new CYP121 inhibitors by screening 8,773 compounds from the drug repositioning database RepoDB. The selection of CYP121 potential inhibitors was based on two criteria: the new inhibitor should bind to CYP121 with higher affinity than its original ligand and interact with catalytically important residues for the function of CYP121. The ligands were docked onto CYP121 using AutoDock Vina, and the molecular dynamics simulation of the selected ligand was conducted using YASARA Structure. We found that antrafenine, an anti-inflammatory and analgesic agent with high CYP inhibitory promiscuity, was bound to CYP121 with a binding affinity of -12.6 kcal/mol and interacted with important residues at the CYP121 binding site. Molecular dynamics analysis of CYP121 bound to the original ligand and antrafenine showed that both ligands affected the dynamics of residues located distantly from the active site. Antrafenine caused more structural changes to CYP121 than the original ligand, as indicated by a significantly higher number of affected residues and rigid body movements caused by the binding of antrafenine to CYP121.

  • Ahmad, Z., Sharma, S., & Khuller, G.K. (2005). In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. Federation of European Microbiological Societies Microbiology Letters, 251(1), 19-22. https://doi.org/10.1016/j.femsle.2005.07.022

  • Belin, P., Le Du, M., Fielding, A., Lequin, O., Jacquet, M., Charbonnier, J., Lecoq, A., Thai, R., Courçon, M., Masson, C., Dugave, C., Genet, R., Pernodet, J., & Gondry, M. (2009). Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 106(18), 7426-7431. https://doi.org/10.1073/pnas.0812191106

  • Bhat, Z. S., Rather, M. A., Maqbool, M., & Ahmad, Z. (2018). Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomedicine and Pharmacotherapy, 103, 1733-1747. https://doi.org/10.1016/j.biopha.2018.04.176

  • Bogaert, I. N., Groeneboer, A. V., Saerens, S. K., & Soetaert, W. (2010). The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. The Federation of European Biochemical Societies Frequency Journal, 278(2), 206-221. https://doi.org/10.1111/j.1742-4658.2010.07949.x

  • Brown, A. S., & Patel, C. J. (2017). A standard database for drug repositioning. Scientific Data, 4(1), Article 170029. https://doi.org/10.1038/sdata.2017.29

  • Brylinski, M. (2018). Aromatic interactions at the ligand–protein interface: Implications for the development of docking scoring functions. Chemical Biology and Drug Design, 91(2), 380-390. https://doi.org/10.1111/cbdd.13084

  • CDC. (2019). Infectious Disease Related to Travel. CDC. https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/tuberculosis

  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for evaluating chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099-3105. https://doi.org/10.1021/ci300367a

  • de Montellano, P. R. O. (2018). Potential drug targets in the Mycobacterium tuberculosis cytochrome P450 system. Journal of Inorganic Biochemistry, 180, 235-245. https://doi.org/10.1016/j.jinorgbio.2018.01.010

  • Fonvielle, M., Le Du, M. H., Lequin, O., Lecoq, A., Jacquet, M., Thai, R., Dubois, S., Grach, G., Gondry, M., & Belin, P. (2013). Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121: Insights from biochemical studies and crystal structures. Journal of Biological Chemistry, 288(24), 17347-17359. https://doi.org/10.1074/jbc.M112.443853

  • Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. Federation of European Microbiological Societies Microbiology Reviews, 41(30, 354-373. https://doi.org/10.1093/femsre/fux011

  • Hayward, S., & Berendsen, H. J. C. (1998). Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins, 30(2), 144-154. https://doi.org/10.1002/(SICI)1097-0134(19980201)30:2%3C144::AID-PROT4%3E3.0.CO;2-N

  • Hoagland, D. T., Liu, J., Lee, R. B., & Lee, R. E. (2016). New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Advanced Drug Delivery Reviews, 102, 55-72. https://doi.org/10.1016/j.addr.2016.04.026

  • Hudson, S. A., McLean, K. J., Munro, A. W., & Abell, C. (2012). Mycobacterium tuberculosis cytochrome P450 enzymes: A cohort of novel TB drug targets. Biochemical Society Transactions, 40(3), 573-579. https://doi.org/10.1042/BST20120062

  • Kanabus, A. (2020). Information about Tuberculosis. Tbfact.org. http://www.tbfacts.org/tb/

  • Krieger, E., Koraimann, G., & Vriend, G. (2002). Increasing the precision of comparative models with YASARA NOVA- A self-parameterizing force field. Proteins: Structure, Function, and Genetics, 47(3), 393-402. https://doi.org/10.1002/prot.10104

  • Leys, D., Mowat, C. G., McLean, K. J., Richmond, A., Chapman, S. K., Walkinshaw, M. D., & Munro, A. W. (2003). Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 Å reveals novel features of cytochrome P450. Journal of Biological Chemistry, 278(7), 5141-5147. https://doi.org/10.1074/jbc.M2099282200

  • Li, Y., Guo, B., Xu, Z., Li, B., Cai, T., Zhang, X., Yu, Y., Wang, H., Shi, J., & Zhu, W. (2016). Repositioning organohalogen drugs: A case study for identification of potent B-Raf V600E inhibitors via docking and bioassay. Scientific Reports, 6(1), Article 31074. https://doi.org/10.1038/srep31074

  • Lockart, M. M., Butler, J. T., Mize, C .J., Fair, M. N., Cruce, A. A., Conner, K. P., Atkins, W. M., & Bowman, M. K. (2020). Multiple drug binding modes in Mycobacterium tuberculosis CYP51B1. Journal of Inorganic Biochemistry, 205, Article 110994. https://doi.org/10.1016/j.jinorgbio.2020.110994

  • Lv, Y., Wang, Y., Zheng, X., & Liang, G. (2020). Reveal the interaction mechanism of five old drugs targeting VEGFR2 through computational simulations. Journal of Molecular Graphics and Modelling, 96, Article 107538. https://doi.org/10.1016/j.jmgm.2020.107538

  • McLean, K. J., Carroll P., Lewis D., Dunford A. J., Seward H. E., Neeli R., Cheesman M. R., Marsollier L., Douglas P., Smith W. E., Rosenkrands I., Cole S. T., Leys D., Parish T., & Munro A. W. (2008). Characterization of active site structure in CYP121-A cytochrome P450 essential for viability of Mycobacterium tuberculosis H37rv. Journal of Biological Chemistry, 283(48), 33406-33416. https://doi.org/10.1074/jbc.M802115200

  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256

  • Nerbert, D. W., Wikvall, K., & Miller, W. L. (2013). Human cytochromes P450 in health and disease. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1612), Article 20120431. https://doi.org/10.1098/rstb.2012.0431

  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1-14. https://doi.org/10.1186/1758-2946-3-33

  • Oelschlaeger, P., Schmid, R. D., & Pleiss, J. (2003). Modeling domino effects in enzymes: Molecular basis of the substrate specificity of the bacterial metallo-β-lactamases IMP-1 and IMP-6. Biochemistry, 42(30), 8945-8956. https://doi.org/10.1021/bi0300332

  • Ouellet, H., Johnston, J. B., & de Montellano, P. R. O. (2010). The Mycobacterium tuberculosis cytochrome P450 system. Archives of Biochemistry and Biophysics, 493(1), 82-95. https://doi.org/10.1016/j.abb.2009.07.011

  • Prasasty, V. D., Cindana, S., Ivan, F. X., Zahroh, H., & Sinaga, E. (2020). Structure-based discovery of novel inhibitors of Mycobacterium tuberculosis CYP121 from Indonesian natural products. Computational Biology and Chemistry, 85, Article 107205. https://doi.org/10.1016/j.compbiolchem.2020.107205

  • Reddyrajula, R., Dalimba, U., & Kumar, S. M. (2019). Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. European Journal of Medicinal Chemistry, 168, 263-282. https://doi.org/10.1016/j.ejmech.2019.02.010

  • Ribas, J., Cubero, E., Luque, F. J., & Orozco, M. (2002). Theoretical study of alkyl-π and aryl-π interactions. Reconciling theory and experiment. Journal of Organic Chemistry, 67(20), 7057-7065. https://doi.org/10.1021/jo0201225

  • Saleem, A., & Azher, M. (2013). The next pandemic- tuberculosis: The oldest disease of mankind rising one more time. British Journal of Medical Practitioners, 6(2), 21-46.

  • Suárez-Castro, A., Valle-Sánchez, M., Cortés-García, C. J., & Chacón-García, L. (2018). Molecular docking in halogen bonding. In P. Vlachakis (Ed.), Molecular Docking (pp. 99-112). Intechopen. http://dx.doi.org/10.5772/intechopen.72994

  • Santos, L. H. S., Ferreira, R. S., & Caffarena, E. R. (2019). Integrating molecular docking and molecular dynamics simulations. In W. F. de Azevedo (Ed.), Methods in Molecular Biology (pp. 13-34). Humana Press. https://doi.org/ 10.1007/978-1-4939-9752-7_2

  • Silue, Y., Lepoutre, A., Mounchetrou-Njoya, I., Lapora, S., Calba, C., & Guthmann, J. (2019). Increase of tuberculosis incidence in Ile-de-France region and the role of recent migration. European Journal of Public Health, 29(Supplement_4), Article ckz186-033. https://doi.org/10.1093/eurpub/ckz186.033

  • Singh, R., Dwivedi, S. P., Gaharwar, U. S., Meena, R., Rajamani, P., & Prasad, T. (2020). Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology, 128(6), 1547-1567. https://doi.org/10.1111/jam.14478

  • Stahl, M., & Sieber, S. A. (2017). An amino acid domino effect orchestrates ClpP’s conformational states. Current Opinion in Chemical Biology, 40, 102-110. https://doi.org/10.1016/j.cbpa.2017.08.007

  • Taylor, D, Cawley, G., & Hayward, S. (2013). Classification of domain movements in proteins using dynamic contact graphs. PLoS ONE, 8(11), Article e81224. https://doi.org/10.1371/journal.pone.0081224

  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

  • Ugalde, S. O., Wallraven, K., Speer, A., Bitter, W., Grossman, T. N., & Commandeur, J. N. M. (2020). Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis. Biochemical Pharmacology, 177, Article 113938. https://doi.org/10.1016/j.bcp.2020.113938

  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., & Wil, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(1), 1074-1082. https://doi.org/10.1093/nar/gkx1037

  • WHO. (2019). Global Tuberculosis Report 2019. World Health Organization. https://www.who.int/publications/i/item/9789241565714

  • WHO. (2020). Global tuberculosis report 2020. World Health Organization. https://www.who.int/publications/i/item/9789240013131

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles