PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (6) Oct. 2023 / JST-3943-2022

 

Integrating Ice Protection and Noise Abatement Systems for Aircraft Application: A Review

Fathima Rehana Munas, Yu Kok Hwa, Norwahida Yusoff, Abdul Majeed Muzathik and Mohd Azmi Ismail

Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023

DOI: https://doi.org/10.47836/pjst.31.6.02

Keywords: Acoustic liner, bias acoustic liner, ice protection, noise abatement

Published on: 12 October 2023

Aircraft icing remains a key aviation hazard as the global fleet of aircraft in various sectors continues to expand, posing a serious threat to flight safety. As previously stated, the growth of this type of aircraft has been accompanied by an increase in noise levels, and aircraft is reportedly the second most bothersome noise source after traffic. However, integrating an acoustic liner with anti-icing techniques on the leading edge of a nacelle would not efficiently eliminate forward radiated noise and improve the thermal performance of the anti-icing system. Hence, it is of the utmost importance to research the integration of ice protection and noise abatement systems for aircraft applications. This review discusses the integration of ice accretion and noise abatement systems in aircraft applications. The prominence of this review is to explain significant features such as ice protection systems, Computational Fluid Dynamics in ice protection, noise abatement systems, and the integration of ice protection systems and noise abatement systems wherever they are described.

  • Al-Khalil, K., Ferguson, T., & Phillips, D. (1997). A hybrid anti-icing ice protection system. In 35th Aerospace Sciences Meeting and Exhibit (p. 302). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1997-302

  • Al-Khalil, K. (2007, January). Thermo-mechanical expulsive deicing system-TMEDS. In 45th AIAA Aerospace Sciences Meeting and Exhibit (p. 692). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2007-692

  • Asante, C. J., Pokhrel, M., & Cho, J. (2016). CFD simulation study of de-icing on a pitot tube. International Journal of Applied Engineering Research, 11(5), 2986-2989.

  • Azam, Q., Ismail, M. A., Mazlan, N. M., & Bashir, M. (2016). Numerical comparison of drag coefficient between nacelle lip-skin with and without bias acoustic liner. International Review of Mechanical Engineering, 10(6), 390-394. https://doi.org/10.15866/ireme.v10i6.9427

  • Azam, Q., & Ismail, M. A. (2017, August 2). Noise abatement system in commercial aircraft by using Bias Acoustic Liner on nacelle lip-skin. In International Conference on Vibration, Sound and System Dynamics (ICVSSD) (p. 49-54). Universiti Sains Malaysia. https://www.researchgate.net/publication/320584447

  • Azam, Q., & Ismail, M. A. (2018). Experimental study of bias acoustic liner on nacelle lip-skin. Journal of Mechanical Engineering, 5(2), 67-77.

  • Barzanouni, Y., Gorji-Bandpy, M., & Tabrizi, H. B. (2020). Simulation of different shapes and arrangements of holes over the leading edge of airfoil by blowing to prevent ice accretion. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(9), Article 448. https://doi.org/10.1007/s40430-020-02524-x

  • Battisti, L. (2015). Wind turbines in cold climates: Icing impacts and mitigation systems. Springer.

  • Bennani, L., Trontin, P., & Radenac, E. (2023). Numerical simulation of an electrothermal ice protection system in anti-icing and deicing mode. Aerospace, 10(1), Article 75. https://doi.org/10.3390/aerospace10010075

  • Birbragher, F. (1988). Nacelle anti‐icing system (U.S. Patent No. 4,738,416). U.S. Patent and Trademark Office. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/4738416

  • Bu, X., Lin, G., Yu, J., Yang, S., & Song, X. (2012). Numerical simulation of an airfoil electrothermal anti-icing system. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(10), 1608-1622. https://doi.org/10.1177/0954410012463525

  • Bu, X., Lin, G., Yu, J., Shen, X., & Hou, P. (2013). Numerical analysis of a swept wing hot air ice protection system. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(9), 1507-1518. https://doi.org/10.1177/0954410013494515

  • Bu, X., Lin, G., Shen, X., Hu, Z., & Wen, D. (2020). Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method. International Journal of Heat and Mass Transfer, 148, Article 119061. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119061

  • Cao, Y., Huang, J., & Yin, J. (2016). Numerical simulation of three-dimensional ice accretion on an aircraft wing. International Journal of Heat and Mass Transfer, 92, 34-54. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.027

  • Cao, Y., Tan, W., Su, Y., Xu, Z., & Zhong, G. (2020). The effects of icing on aircraft longitudinal aerodynamic characteristics. Mathematics, 8(7), Article 1171. https://doi.org/10.3390/math8071171

  • Croce, G., Habashi, W. G., Guevremont, G., & Tezok, F. (1998). 3D thermal analysis of an anti-icing device using FENSAP-ICE. In 36th AIAA Aerospace Sciences Meeting and Exhibit (p. 193). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1998-193

  • de Mattos, B. S., & Oliveira, G. L. (2000). Three-dimensional thermal coupled analysis of a wing slice slat with a piccolo tube. In 18th Applied Aerodynamics Conference (p. 3921). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2000-3921

  • Domingos, R. H., Papadakis, M., & Zamora, A. O. (2010). Computational methodology for bleed air ice protection system parametric analysis. In AIAA Atmospheric and Space Environments Conference (p. 7834). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-7834

  • Elangovan, R., & Hung, K. E. (2007). Minimum heating energy requirements of piccolo tube jet impingement thermal anti-icing system. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference (Vol. 1, pp. 959-967). The American Society of Mechanical Engineers. https://doi.org/10.1115/ht2007-32080

  • Goraj, Z. (2004). An overview of the de-icing and anti-icing technologies with prospects for the future. In 24th International Congress of the Aeronautical Sciences (Vol. 29). International Council of the Aeronautical Sciences.

  • Grishaev, V. G., Borodulin, I. S., Usachev, I. A., Amirfazli, A., Drachev, V. P., Rudenko, N. I., Gattarov, R. K., Bakulin, I. K., Makarov, M. V., & Akhatov, I. S. (2021). Anti-icing fluids interaction with surfaces: Ice protection and wettability change. International Communications in Heat and Mass Transfer, 129, Article 105698. https://doi.org/10.1016/j.icheatmasstransfer.2021.105698

  • Hannat, R., & Morency, F. (2014). Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. Journal of Aircraft, 51(1), 104-116. https://doi.org/10.2514/1.c032078

  • Hassaani, A., Elsayed, A. F., & Khalil, E. E. (2020). Numerical investigation of thermal anti-icing system of aircraft wing. International Robotics & Automation Journal, 6(2), 60-65. https://doi.org/10.15406/iratj.2020.06.00202

  • Huanyu, D., Chang, S., & Mengjie, S. (2020). The optimization of simulated icing environment by adjusting the arrangement of nozzles in an atomization equipment for the anti-icing and deicing of aircrafts. International Journal of Heat and Mass Transfer, 155, Article 119720. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119720

  • Hoffman, D. A. (2007). Experimental investigation of turbojet thrust augmentation using an ejector [Doctoral dissertation]. Air Force Institute of Technology, USA. https://scholar.afit.edu/cgi/viewcontent.cgi?article=3966&context=etd

  • Hua, J., Kong, F., & Liu, H. H. T. (2007). Unsteady thermodynamic computational fluid dynamics simulations of aircraft wing anti-icing operation. Journal of Aircraft, 44(4), 1113-1117. https://doi.org/10.2514/1.24122

  • Hua, J., & Liu, H. H. (2005). Fluid flow and thermodynamic analysis of a wing anti-icing system. Canadian Aeronautics and Space Journal, 51(1), 35-40. https://doi.org/10.5589/q05-004

  • Ismail, M. A. (2013). Enhancement of heat transfer performance on nacelle lip-skin for swirl anti-icing [Unpublished Doctoral dissertation]. Kingston University, England.

  • Ismail, M. A., & Abdullah, M. Z. (2015). Applying computational fluid dynamic to predict the thermal performance of the nacelle anti-icing system in real flight scenarios. Indian Journal of Science and Technology, 8(30), Article 66. https://doi.org/10.17485/ijst/2015/v8i30/86058

  • Ismail, M. A., & Wang, J. (2018). Effect of nozzle rotation angles and sizes on thermal characteristic of swirl anti-icing. Journal of Mechanical Science and Technology, 32(9), 4485-4493. https://doi.org/10.1007/s12206-018-0845-x

  • Ives, A. O. (2009). Perforated honeycomb acoustic liner heat transfer [Unpublished Doctoral dissertation]. Queen University Belfast, UK.

  • Ives, A. O., Wang, J., Raghunathan, S., & Sloan, P. (2011). Heat transfer through single hole bias flow acoustic liner. Journal of Thermophysics and Heat Transfer, 25(3), 409-423. https://doi.org/10.2514/1.T3637

  • Jiang, X., & Wang, Y. (2019). Studies on the electro-impulse de-icing system of aircraft. Aerospace, 6(6), Article 67. https://doi.org/10.3390/aerospace6060067

  • Jun, S., Dongguang, X., Lin, Y., & Dongyu, Z. (2020). Experimental study of hybrid deicing system. IOP Conference Series: Materials Science and Engineering , 751, Article 012042. https://doi.org/10.1088/1757-899X/751/1/012042

  • Khai, L. C. (2021). CFD study on thermal characteristics of acoustic liner and bias acoustic liner in real flight conditions [Unpublished Master’s thesis]. University Sains Malaysia, Malaysia.

  • Khai, L. C., Ismail, M. A., Azam, Q., & Mazlan, N. M. (2020). Experimental study on aerodynamic performance of nacelle lip-skin bias flow. Journal of Mechanical Science and Technology, 34(4), 1613-1621. https://doi.org/10.1007/s12206-020-0323-0

  • Khalil, E. E., Said, E., AlSaleh, A., & ElHariry, G. (2020). Effect of hot air jet arrangement from a piccolo tube in aircraft wing anti-icing system. In AIAA Propulsion and Energy 2020 Forum (p. 3952). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2020-3952

  • Liu, Q., Yang, Y., Wang, Q., Cui, Y., & Cai, J. (2019). Icing performance of stratospheric airship in ascending process. Advances in Space Research, 64(11), 2405-2416. https://doi.org/10.1016/j.asr.2019.09.013

  • Ma, Q. (2011). Aircraft icing and thermo-mechanical expulsion de-icing technology [Master’s thesis]. Cranfield University, UK. https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/12478/Ma_Q_2010.pdf?sequence=1&isAllowed=y

  • Moe, J. W., Wunsch, J. J., & Sperling, M. S. (2009). Method and apparatus for noise abatement and ice protection of an aircraft engine nacelle inlet lip. (U.S. Patent No. 7,588,212). U.S. Patent and Trademark Office. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7588212

  • Morency, F., Brahimi, M., Tezok, F., & Paraschivoiu, I. (1997). Hot air anti-icing system modelization in the ice prediction code CANICE. In 36th AIAA Aerospace Sciences Meeting and Exhibit (p. 192). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1998-192

  • Morency, F., Tezok, F., & Paraschivoiu, I. (2000). Heat and mass transfer in the case of anti-icing system simulation. Journal of Aircraft, 37(2), 245-252. https://doi.org/10.2514/2.2613

  • Nagappan, N. M. (2013). Numerical modeling of anti-icing using an array of heated synthetic jets [Doctoral dissertation]. Embry-Riddle Aeronautical University, Florida. https://commons.erau.edu/cgi/viewcontent.cgi?article=1108&context=edt

  • Papadakis, M., & Wong, S. H. J. (2006). Parametric investigation of a bleed air ice protection system. In 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 1013). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006-1013

  • Petrenko, V. F. (2005). System and method for modifying ice-to-object interface (U.S. Patent No. 6,870,139). U.S. Patent and Trademark Office. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6870139

  • Raghunathan, S., Benard, E., Watterson, J. K., Cooper, R. K., Curran, R., Price, M., Yao, H., Devine, R., Crawford, B., Riordan, D., Linton, A., Richardson, J., & Tweedie, J. (2006). Key aerodynamic technologies for aircraft engine nacelles. The Aeronautical Journal, 110(1107), 265-288. https://doi.org/10.1017/s0001924000013154

  • Ramamurthy, S., Keith, T. G., Jr., De Witt, K. J., Putt, J. C., Martin, C. A., & Leffel, K. L., (1991). Numerical modelling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft. In AIAA 29th Aerospace and Science Meeting (p. 555). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1991-555

  • Reid, T., Baruzzi, G. S., & Habashi, W. G. (2012). FENSAP-ICE: Unsteady conjugate heat transfer simulation of electrothermal de-icing. Journal of Aircraft, 49(4), 1101-1109. https://doi.org/10.2514/1.c031607

  • Rigby, D. (2006). Numerical investigation of hole pattern effect on piccolo tube anti-icing. In 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 1012). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006-1012

  • Rohini, D., Lokesgarun, D., Naveen, R., & Samiyappan, P. (2019). Comparison of rotating piccolo tube with fixed piccolo tube by using CFD. International Journal of Engineering and Technology, 11(1), 26-34. https://doi.org/10.21817/ijet/2019/v11i1/191101017

  • Ronaudo, R. J., Batterson, J. G., Reehors, A. L., Bonds, T. H., & O’Mara, T. M. (1991). Effect of tail ice on longitudinal aerodynamic derivatives. Journal of Aircraft, 28(3), 193-199. https://doi.org/10.2514/3.46012

  • Rosenthal, H. A., & Nelepovitz, D. O. (1985). AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference, Monetary California. American Institute of Aeronautics and Astronautics

  • Shen, X., Lin, G., Yu, J., Bu, X., & Du, C. (2013). Three-dimensional numerical simulation of ice accretion at the engine inlet. Journal of Aircraft, 50(2), 635-642. https://doi.org/10.2514/1.c031992

  • Smith, A. G., & Taylor, K. (1997). The simulation of an aircraft engine intake anti‐icing system. The PHOENICS Journal of Computational Fluid Dynamics and its Applications, 10(2), 150-166.

  • Sreedharan, C., Nagpurwala, Q. H., Subbaramu, S. (2014). Effect of hot air jets from a piccolo tube in aircraft wing anti-icing unit. SASTech - Technical Journal of RUAS, 13(2), 2-5.

  • Syed, M. H. Y., Ismail, M. A., Azam, Q., Rajendran, P., & Mazlan, N. M. (2018). Simulation study of the effect of anti-icing on the nacelle lip-skin material. In IOP Conf. Series: Materials Science and Engineering (Vol. 370, p. 012011). IOP Publishing. https://doi.org/10.1088/1757-899X/370/1/012011

  • United States National Transportation Safety Board. (2007). Aircraft accident report: Crash during approach to landing, circuit city stores, Inc., Cessna citation 560, N500AT, Pueblo, Colorado, February 16, 2005. https://reports.aviation-safety.net/2007/20070317-1_C500_N511AT.pdf

  • Wang, H., Tran, P., Habashi, W. G., Chen, Y., Zhang, M., & Feng, L. (2007). Anti-icing simulation in wet air of a piccolo system using FENSAP-ICE. SAE Technical Paper 2007-01-3357. SAE International. https://doi.org/10.4271/2007-01-3357

  • Wang, Z., Zhao, H., & Liu, S. (2022). Numerical Simulation of Aircraft Icing under Local Thermal Protection State. MDPI Aerospace, 9(2), Article 84. https://doi.org/10.3390/aerospace9020084

  • Wong, S. H., Papadakis, M., & Zamora, A. (2009). Computational Investigation of Bleed Air Ice Protection System. In 1st AIAA Atmospheric and Space Environments Conference (p. 3966). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-3966

  • Yang, K., Liu, Q., Lin, Z., Liang, Y., & Liu, C. (2022). Investigations of interfacial heat transfer and droplet nucleation on bioinspired superhydrophobic surface for anti-icing/de-icing. SSRN Electronic Journal, 1-22. https://doi.org/10.2139/ssrn.4002238

  • Zhou, Y., Lin, G., Bu, X., Mu, Z., Pan, R., Ge, Q., & Qiao, X. (2017, March). Temperature and Runback Ice Prediction Method for Three-Dimensional Hot Air Anti-Icing System. In IOP Conference Series: Materials Science and Engineering (Vol. 187, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1757-899x/187/1/012017

  • Zheng, M., Guo, Z., Dong, W., & Guo, X. (2019). Experimental investigation on ice accretion on a rotating aero-engine spinner with hydrophobic coating. International Journal of Heat and Mass Transfer, 136, 404-414. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.104