e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (6) Oct. 2023 / JST-3950-2022


Magnetic Susceptibility and Hydrogen Cyanide Levels as Proxy Indicator for Gold Mining Pollution in River Sediment

Siti Zulaikah, Arif Juliansyah, Muhammad Fathur Rouf Hasan, Bambang Heru Iswanto, Mariyanto Mariyanto, Ardyanto Tanjung, Satria Bijaksana and Ann Marie Hirt

Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023


Keywords: Geochemistry, hydrogen cyanide (HCN), magnetic susceptibility, river sediments, tailings

Published on: 12 October 2023

Sumbawa’s Kuris River is one of the rivers contaminated by the island’s traditional gold mine. In order to detect contaminant levels, we examine the magnetic susceptibility, HCN levels, and the heavy metal contents on the river’s surface sediment. Environmental pollution has been widely assessed using a combination of magnetic properties and geochemical analysis. The goals of this research are to discover how magnetic susceptibility (χ) can be used as a first-order proxy for pollution. The relation between susceptibility and HCN is of particular interest, as this is a major contaminant associated with gold mining. The surface sediment samples were collected at ten different locations along the rivers. The magnetic susceptibility was determined using the Bartington MS2B, and the hydrogen cyanide (HCN) concentration was determined using Argentometric titration. The element content was determined by an Atomic Absorption Spectrometer (AAS). The low-frequency magnetic susceptibility (χlf) ranges from 71 to 115×10-8 m3/kg, with an average of 97×10-8 m3/kg, and the χfd(%) analysis ranges from 2% to 4%. The presence of spherical iron oxides, which are indicative of combustion byproducts, was also confirmed by SEM. The samples have low magnetic susceptibility but high levels of Hg and HCN. AAS results showed high Fe, Zn, and Cu concentrations in river sediments, with more variable concentrations of Hg, Mn, As, Cr, and Au. Because Fe, Cu, As, Hg, and HCN have a significant Pearson’s correlation with χfd(%), this parameter can be a useful indicator for contamination caused by gold mining waste.

  • Alfonsi, L., Nazzari, M., & Macrì, P. (2021). Rock magnetic and micro-morphological analysis on snow deposits: Recognition of anthropogenic origin of particulate matter in urban and wilderness areas (central Italy). Annals of Geophysics, 64(2), Article GM215.

  • Ali, H., & Khan, E. (2018). Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Human and Ecological Risk Assessment: An International Journal, 24(8), 2101-2118.

  • Alokhina, T. (2021). Magnetic particles in the sediments of the south Ukraine rivers as the marker of the technogenic impact on the hydroecosystems. E3S Web of Conferences, 234, Article 00048.

  • Anderson, C. (2010). Assessment of biogeochemical mercury cycling: Sekotong artisanal mining area, Lombok, West Nusa Tenggara (WNT) Province, Indonesia [IDRF Final Report No. GRA/347/7]. New Zealand Ministry of Foreign Affairs and Trade.

  • Bruno, D. E., Ruban, D. A., Tiess, G., Pirrone, N., Perrotta, P., Mikhailenko, A. V., Ermolaev, V. A., & Yashalova, N. N. (2020). Artisanal and small-scale gold mining, meandering tropical rivers, and geological heritage: Evidence from Brazil and Indonesia. Science of The Total Environment, 715, Article 136907.

  • Chaparro, M. A. E., Ramírez-Ramírez, M., Chaparro, M. A. E., Miranda-Avilés, R., Puy-Alquiza, M. J., Böhnel, H. N., & Zanor, G. A. (2020). Magnetic parameters as proxies for anthropogenic pollution in water reservoir sediments from Mexico: An interdisciplinary approach. Science of The Total Environment, 700, Article 134343.

  • Dearing, J. (1999). Environmental magnetic susceptibility using the Bartington MS2 system. (2nd ed.). Bartington Instruments.

  • Decena, S. C. P., Arguelles, M. S., & Robel, L. L. (2018). Assessing heavy metal contamination in surface sediments in an urban river in the Philippines. Polish Journal of Environmental Studies, 27(5), 1983-1995.

  • Donato, D. B., Nichols, O., Possingham, H., Moore, M., Ricci, P. F., & Noller, B. N. (2007). A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environment International, 33(7), 974-984.

  • Duncan, A. E., de Vries, N., & Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, & Soil Pollution, 229(8), Article 272.

  • Government Regulation of the Republic Indonesia (2001). Peraturan pemerintah (PP) No. 82 tahun 2001: Pengelolaan kualitas air dan pengendalian pencemaran air [Number 82 of 2001: Concerning Water Quality Management and Water Pollution Control]. Badan Pemeriksa Keuangan Republik Indonesia.

  • Hrouda, F. (2011). Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophysical Journal International, 187(3), 1259-1269.

  • Jaszczak, E., Polkowska, Ż., Narkowicz, S., & Namieśnik, J. (2017). Cyanides in the environment-analysis-problems and challenges. Environmental Science and Pollution Research, 24(19), 15929-15948.

  • Jordanova, D., Goddu, S. R., Kotsev, T., & Jordanova, N. (2013). Industrial contamination of alluvial soils near Fe-Pb mining site revealed by magnetic and geochemical studies. Geoderma, 192, 237-248.

  • Juliansyah, A., Zulaikah, S., Mufti, N., Agustin, E. Y., Pujiastuti, R., & Iswanto, B. H. (2020). Magnetic susceptibility of river sediment in polluted area of traditional gold mining in Kuris Sumbawa Indonesia. In AIP Conference Proceedings, 2251(1), Article 040020.

  • Junaidi, M., Krisnayanti, B. D., Juharfa, J., & Anderson, C. (2019). Risk of mercury exposure from fish consumption at artisanal small-scale gold mining areas in West Nusa Tenggara, Indonesia. Journal of Health and Pollution, 9(21), Article 190302.

  • Kelepertzis, E., Argyraki, A., Botsou, F., Aidona, E., Szabó, Á., & Szabó, C. (2019). Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Environmental Pollution, 245, 909-920.

  • Kumar, V., Sharma, A., Minakshi, Bhardwaj, R., & Thukral, A. K. (2018). Temporal distribution, source apportionment, and pollution assessment of metals in the sediments of Beas river, India. Human and Ecological Risk Assessment: An International Journal, 24(8), 2162-2181.

  • Li, J., Lin, S., & Qin, S. (2016). Characteristics of sediment bacterial community in response to environmental impacts in a sewage polluted river. Journal of Coastal Research, 74, 196-206.

  • Mariyanto, M., Amir, M. F., Utama, W., Hamdan, A. M., Bijaksana, S., Pratama, A., Yunginger, R., & Sudarningsih, S. (2019a). Environmental magnetism data of Brantas River bulk surface sediments, Jawa Timur, Indonesia. Data in Brief, 25, Article 104092.

  • Mariyanto, M., Amir, M. F., Utama, W., Hamdan, A. M., Bijaksana, S., Pratama, A., Yunginger, R., & Sudarningsih, S. (2019b). Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia. Science of The Total Environment, 675, 632-641.

  • Morales, J., Hernández-Bernal, M. D. S., Corona-Chávez, P., Gogichaishvili, A., & Bautista, F. (2016). Further evidence for magnetic susceptibility as a proxy for the evaluation of heavy metals in mining wastes: Case study of Tlalpujahua and El Oro mining districts. Environmental Earth Sciences, 75(4), Article 309.

  • Ouyang, T., Li, M., Appel, E., Tang, Z., Peng, S., Li, S., & Zhu, Z. (2020). Magnetic response of Arsenic pollution in a slag covered soil profile close to an abandoned tungsten mine, southern China. Scientific Reports, 10, Article 4357.

  • Prereira, L. B. F., & Neto, J. A. S. (2007). Cyanide distribution in the stream sediments and tailings at the bonfim (W-AU-BI-TE) mine northeastern Brazil. Geochimica Brasiliensis, 21, 261-273.

  • Ravisankar, R., Harikrishnan, N., Chandrasekaran, A., Gandhi, M. S., & Alagarsamy, R. (2018). Data on heavy metal and magnetic relationships in coastal sediments from South East Coast of Tamilnadu, India. Data in Brief, 16, 392-400.

  • Salomão, G. N., Farias, D. D. L., Sahoo, P. K., Dall’Agnol, R., & Sarkar, D. (2021). Integrated geochemical assessment of soils and stream sediments to evaluate source-sink relationships and background variations in the Parauapebas River Basin, Eastern Amazon. Soil Systems, 5(1), Article 21.

  • Shanbehzadeh, S., Dastjerdi, M. V., Hassanzadeh, A., & Kiyanizadeh, T. (2014). Heavy metals in water and sediment: A case study of Tembi River. Journal of Environmental and Public Health, 2014, Article 858720.

  • Shehong, L., Baoshan, Z., Jianming, Z., & Xiaoying, Y. (2005). The distribution and natural degradation of cyanide in goldmine tailings and polluted soil in arid and semiarid areas. Environmental Geology, 47(8), 1150-1154.

  • Sudarningsih, S., Bijaksana, S., Ramdani, R., Hafidz, A., Pratama, A., Widodo, W., Iskandar, I., Dahrin, D., Fajar, S. J., & Santoso, N. A. (2017). Variations in the concentration of magnetic minerals and heavy metals in suspended sediments from Citarum river and its tributaries, West Java, Indonesia. Geosciences, 7(3), Article 66.

  • Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69(10), 1466-1474.

  • Świetlik, R., & Trojanowska, M. (2016). Mobility of chromium and its chemical fractions in river sediment polluted by tannery effluents (Poland). Soil and Sediment Contamination: An International Journal, 25(3), 266-278.

  • Szczepaniak-Wnuk, I., Górka-Kostrubiec, B., Dytłow, S., Szwarczewski, P., Kwapuliński, P., & Karasiński, J. (2020). Assessment of heavy metal pollution in Vistula river (Poland) sediments by using magnetic methods. Environmental Science and Pollution Research, 27(19), 24129-24144.

  • Wang, J., Li, S., Li, H., Qian, X., Li, X., Liu, X., Lu, H., Wang, C., & Sun, Y. (2017). Trace metals and magnetic particles in PM2.5: Magnetic identification and its implications. Scientific Reports, 7(1), 1-11.

  • Yunginger, R., Bijaksana, S., Dahrin, D., Zulaikah, S., Hafidz, A., Kirana, K. H., Sudarningsih, S., Mariyanto, M., & Fajar, S. J. (2018). Lithogenic and anthropogenic components in surface sediments from Lake Limboto as shown by magnetic mineral characteristics, trace metals, and REE Geochemistry. Geosciences, 8(4), Article 116.

  • Zajzon, N., Marton, E., Sipos, P., Kristaly, F., Nemeth, T., Kis-Kovacs, V., & Weiszburg, T. G. (2013). Integrated mineralogical and magnetic study of magnetic airborne particles from potential pollution sources in industrial-urban environment. Carpathian Journal of Earth and Environmental Sciences, 8(1), 179-186

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles