e-ISSN 2231-8526
ISSN 0128-7680
Farah Najwa Ahmad, Noor Faizul Hadry Nordin, Muhamad Shirwan Abdullah Sani and Wan Syibrah Hanisah Wan Sulaiman
Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023
DOI: https://doi.org/10.47836/pjst.31.6.27
Keywords: Bacterial community, biodegradation, dibenzofuran, landfill leachate, One-Factor-at-a-Time (OFAT)
Published on: 12 October 2023
The contamination of the environment has been a global issue, and bioremediation is proposed as an option to clean up the contamination sites with the promising utilization of bacterial community capabilities. The indigenous bacterial community in the landfill leachate is recognized to carry enzymes for the degradation of contaminants such as dioxin congeners, the dibenzofuran. Environmental factors have been known to influence the process to achieve successful biodegradation, and the optimized conditions may speed up the biodegradation process. Thus, this study was conducted to optimize the substrate availability, temperature, and pH factor for the degradation of dibenzofuran from landfill leachate by the native bacterial community in landfill leachate. This study uses the one-factor at-time (OFAT) approach to measure dibenzofuran degradation. The landfill leachate with enrichment of dibenzofuran (15 to 45 mg L-1) was incubated at temperatures (30°C to 42°C) and pH (5 to 9) for 24 hours before being extracted and analyzed. From the first part of the study, 15 mg L-1 of dibenzofuran, 30°C temperature, and pH 7 have shown the highest dibenzofuran degradation. Later, the optimum condition of dibenzofuran removal (74.40%) was achieved when the landfill leachate was spiked with 15 ppm dibenzofuran at 30°C and pH 7 for 24 hours. This study proposes optimized conditions that give a better result for dibenzofuran degradation, which may enhance bioremediation.
Al-Hawash, A. B., Dragh, M. A., Li, S., Alhujaily, A., Abbood, H. A., Zhang, X., & Ma, F. (2018). Principles of microbial degradation of petroleum hydrocarbons in the environment. Egyptian Journal of Aquatic Research, 44(2), 71-76. https://doi.org/10.1016/j.ejar.2018.06.001
Ambust, S., Das, A. J., & Kumar, R. (2021). Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments. Current Research in Microbial Sciences, 2, Article 100031. https://doi.org/10.1016/j.crmicr.2021.100031
Arliyani, I., Tangahu, B. V., & Mangkoedihardjo, S. (2021). Selection of plants for constructed wetlands based on climate and area in the interest of processing pollutant parameters on leachate: A review. IOP Conference Series: Earth and Environmental Science, 835(1), Article 012003. https://doi.org/10.1088/1755-1315/835/1/012003
Aziz, S. Q., Bashir, M. J. K., Aziz, H. A., Mojiri, A., Salem, S., Amr, A., & Maulood, Y. I. (2018). Statistical analysis of municipal solid waste landfill leachate characteristics in different countries. Zanco Journal of Pure and Applied Sciences, 30(6), 85-96. https://doi.org/10.21271/zjpas.30.6.8
Baran, A., Mierzwa-Hersztek, M., Urbaniak, M., Gondek, K., Tarnawski, M., Szara, M., & Zieliński, M. (2020). An assessment of the concentrations of PCDDs/Fs in contaminated bottom sediments and their sources and ecological risk. Journal of Soils and Sediments, 20, 2588-2597. https://doi.org/10.1007/s11368-019-02492-3
Baran, A., Urbaniak, M., Szara, M., & Tarnawski, M. (2021). Concentration of dioxin and screening level ecotoxicity of pore water from bottom sediments in relation to organic carbon contents. Ecotoxicology, 30, 57-66. https://doi.org/10.1007/s10646-020-02318-w
Dávalos-Peña, I., Fuentes-Rivas, R. M., Fonseca-Montes de Oca, R. M. G., Ramos-Leal, J. A., Morán-Ramírez, J., & Martínez Alva, G. (2021). Assessment of physicochemical groundwater quality and hydrogeochemical processes in an area near a municipal landfill site: A case study of the toluca valley. International Journal of Environmental Research and Public Health, 18(21), Article 11195. https://doi.org/10.3390/ijerph182111195
Earnden, L., Marangoni, A. G., Laredo, T., Stobbs, J., Marshall, T., & Pensini, E. (2022). Decontamination of water co-polluted by copper, toluene and tetrahydrofuran using lauric acid. Scientific Reports, 12(1), 1-20. https://doi.org/10.1038/s41598-022-20241-4
Eldos, H. I., Zouari, N., Saeed, S., & Al-Ghouti, M. A. (2022). Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. Arabian Journal of Chemistry, 15, Article 103918. https://doi.org/10.1016/j.arabjc.2022.103918
Eskenazi, B., Warner, M., Brambilla, P., Signorini, S., Ames, J., & Mocarelli, P. (2018). The Seveso accident: A look at 40 years of health research and beyond. Environment International, 121, 71-84. https://doi.org/10.1016/j.envint.2018.08.051
Ferronato, N., & Toretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(1060), 1-28. https://doi.org/10.3390/ijerph16061060
Gaur, N., Dutta, D., Singh, A., Dubey, R., & Kamboj, D. V. (2022). Recent advances in the elimination of persistent organic pollutants by photocatalysis. Frontiers in Environmental Science, 10, Article 872514. https://doi.org/10.3389/fenvs.2022.872514
Haedrich, J., Stumpf, C., & Denison, M. S. (2020). Rapid extraction of total lipids and lipophilic POPs from all EU regulated foods of animal origin: Smedes ’ method revisited and enhanced. Environmental Sciences Europe, 32(118), 1-33. https://doi.org/10.1186/s12302-020-00396-5
Imron, M. F., Kurniawan, S. B., Ismail, N. I., & Abdullah, S. R. S. (2020). Future challenges in diesel biodegradation by bacteria isolates: A review. Journal of Cleaner Production, 251, Article 119716. https://doi.org/10.1016/j.jclepro.2019.119716
Kumari, P., Kaur, A., & Gupta, N. C. (2018). Extent of groundwater contamination due to leachate migration adjacent to unlined landfill site of Delhi. Environmental Claims Journal, 31(2), 160-175. https://doi.org/10.1080/10406026.2018.1543825
Mahjoubi, M., Aliyu, H., Neifar, M., Cappello, S., Chouchane, H., Souissi, Y., Masmoudi, A. S., Cowan, D. A., & Cherif, A. (2021). Genomic characterization of a polyvalent hydrocarbonoclastic bacterium Pseudomonas sp. strain BUN14. Scientific Reports, 11, 1-13. https://doi.org/10.1038/s41598-021-87487-2
Maier, R. M., & Pepper, I. L. (2015). Chapter 3 - Bacterial growth. In I. L. Pepper, C. P. Gerba & T. J. Gentry (Eds.), Environmental Microbiology (Third Edition) (pp. 37-56). Academic Press. https://doi.org/10.1016/B978-0-12-394626-3.00003-X
Morris, S., Garcia-Cabellos, G., Enright, D., Ryan, D., & Enright, A. M. (2018). Bioremediation of landfill leachate using isolated bacterial strains. International Journal of Environmental Bioremediation & Biodegradation, 6(1), 26-35. https://doi.org/10.12691/ijebb-6-1-4
Nhung, N. T. H., Nguyen, X. T. T., Long, V. D., Wei, Y., & Fujita, T. (2022). A Review of soil contaminated with dioxins and biodegradation technologies: Current status and future prospects. Toxics, 10(6), Article 278. https://doi.org/10.3390/toxics10060278
Njoku, P. O., Edokpayi, J. N., & Odiyo, J. O. (2019). Health and environmental risks of residents living close to a landfill: A case study of thohoyandou landfill, Limpopo Province, South Africa. International Journal of Environmental Research and Public Health, 16(2125), 1-27. https://doi.org/10.3390/ijerph16122125
Rashwan, T. L., Fournie, T., Green, M., Duchesne, A. L., Brown, J. K., Grant, G. P., Torero, J. L., & Gerhard, J. I. (2022). Applied smouldering for co-waste management: Benefits and trade-offs. Fuel Processing Technology, 240, Article 107542. https://doi.org/10.1016/j.fuproc.2022.107542
Razali, Y. S., Tajarudin, H. A., & Daud, Z. (2018). Extraction of volatile fatty acids from leachate via liquid-liquid extraction and adsorption method. International Journal of Integrated Engineering, 10(9), 79-84. https://doi.org/10.30880/ijie.2018.10.09.029
Saibu, S., Adebusoye, S. A., & Oyetibo, G. O. (2020). Aerobic bacterial transformation and biodegradation of dioxins: A review. Bioresources and Bioprocessing, 7(7), 1-21. https://doi.org/10.1186/s40643-020-0294-0
Salam, M., & Nilza, N. (2021). Hazardous components of landfill leachates and its bioremediation. In M. L. Larramendy & S. Soloneski (Eds.), Soil Contamination-Threats and Sustainable Solutions (pp. 167-176). IntechOpen.
Sani, M. S. A., Bakar, J., Azid, A., & Iqbal, M. J. (2022). Chemometrics-based evaluation on the effect of sonication, contact time and solid-to-solvent ratio on total phenolics and flavonoids, free fatty acids and antibacterial potency of Carica papaya seed against S. enteritidis, B. cereus, V. vulnificus and P. mirabilis. Food Chemistry Advances, 1, Article 100033. https://doi.org/10.1016/j.focha.2022.100033
Sanusi, N. H. (2017). Degradation Analysis of Dibenzofuran by Rhizospheric Bacteria. Kulliyyah of Science, International Islamic Universiti Malaysia.
Soare, M. G., Lakatos, E. S., Ene, N., Malo, N., Popa, O., & Babeanu, N. (2019). The potential applications of bacillus sp. And pseudomonas sp. strains with antimicrobial activity against phytopathogens in waste oils and the bioremediation of hydrocarbons. Catalysts, 9(11), Article 959. https://doi.org/10.3390/catal9110959
Szajner, J., Czarby-Działak, M., Żeber-Dzikowska, I., Dziechciaż, M., Pawlas, N., & Walosik, A. (2021). Dioxin-like compounds (DLCs) in the environment and their impact on human health. Journal of Elementology, 26(2), 419-431. https://doi.org/10.5601/jelem.2021.26.2.2130
Tajudin, M. T. F. M. (2017). Microbial Degradation of Polychlorinated Biphenyls and Dibenzofuran by Burkholderia xenovurans LB400 Isolated from Landfill Leacahete. Kulliyyah of Science, International Islamic University Malaysia.
Tarekegn, M. M., Salilih, F. Z., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food and Agriculture, 6(1), Article 1783174. https://doi.org/10.1080/23311932.2020.1783174
Tas, N., Brandt, B. W., Braster, M., Van, B. M., & Wilfred, F. M. R. (2018). Subsurface landfill leachate contamination affects microbial metabolic potential and gene expression in the Banisveld aquifer. FEMS Microbiology Ecology, 94(10), 1-12. https://doi.org/10.1093/femsec/fiy156
Terzaghi, E., Vergani, L., Mapelli, F., Borin, S., Raspa, G., Zanardini, E., Morosini, C., Anelli, S., Nastasio, P., Sale, V. M., Armiraglio, S., & Di Guardo, A. (2020). New data set of polychlorinated dibenzo-p-dioxin and dibenzofuran half-lives: Natural attenuation and rhizoremediation using several common plant species in a weathered contaminated soil. Environmental Science and Technology, 54(16), 10000-10011. https://doi.org/10.1021/acs.est.0c01857
Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., & Alvarez, P. J. J. (2016). Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering, 2(4), 426-437. https://doi.org/10.1016/J.ENG.2016.04.005
Wdowczyk, A., & Szymańska-Pulikowska, A. (2021). Comparison of landfill leachate properties by LPI and phytotoxicity - A case study. Frontiers in Environmental Science, 9, 1-14. https://doi.org/10.3389/fenvs.2021.693112
Xiang, W., Wei, X., Tang, H., Li, L., & Huang, R. (2020). Complete genome sequence and biodegradation characteristics of benzoic acid-degrading bacterium Pseudomonas sp. SCB32. BioMed Research International, 2020, 1-12. https://doi.org/10.1155/2020/6146104
Zakaria, S. N. F., & Aziz, H. A. (2018). Characteristic of leachate at Alor Pongsu landfill site, Perak, Malaysia: A comparative study. In IOP Conference Series: Earth and Environmental Science (Vol. 140, No. 1, p. 012013). IOP Publishing.
Zhao, L., Zhou, M., Zhao, Y., Yang, J., Pu, Q., Yang, H., Wu, Y., Lyu, C., & Li, Y. (2022). Potential toxicity risk assessment and priority control strategy for PAHs metabolism and transformation behaviors in the environment. International Journal of Environmental Research and Public Health, 19(17), 1-25. https://doi.org/10.3390/ijerph191710972
Zhao, R., Liu, J., Feng, J., Li, X., & Li, B. (2021). Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Science of the Total Environment, 767, Article 144861. https://doi.org/10.1016/j.scitotenv.2020.144861
ISSN 0128-7680
e-ISSN 2231-8526