e-ISSN 2231-8526
ISSN 0128-7680
Izzati Saleh, Azwati Azmin, Azan Yunus and Wan Rahiman
Pertanika Journal of Science & Technology, Volume 32, Issue 1, January 2024
DOI: https://doi.org/10.47836/pjst.32.1.06
Keywords: Mobile robot navigation, obstacle detection, path following, VFH+ algorithm
Published on: 15 January 2024
This research analyses Pure-pursuit algorithm parameters for nonholonomic mobile robot navigation in unstructured and constrained space. The simulation-based experiment is limited to the mobile robot arrangement. The Look Ahead Distance parameter is adjusted so the mobile robot can navigate the predefined map closely following the waypoints. The optimal Look Ahead Distance value is combined with the VFH+ algorithm for obstacle avoidance. The method is enhanced by adding the λ weight so the robot returns to its waypoints after avoiding an obstacle. The investigation reveals that λ influences the mobile robot’s capacity to return to its predetermined waypoints after avoiding an obstacle. Based on the simulation experiment, the optimal LAD value is 0.2m, and the optimal λ value is 0.8.
Ahn, J., Shin, S., Kim, M., & Park, J. (2021). Accurate path tracking by adjusting look-ahead point in pure pursuit method. International Journal of Automotive Technology, 22(1), 119-129. https://doi.org/10.1007/s12239-021-0013-7
Bolbhat, S. S., Bhosale, A. S., Sakthivel, G., Saravanakumar, D., Sivakumar, R., & Lakshmipathi, J. (2020). Intelligent obstacle avoiding agv using vector field histogram and supervisory control. In Journal of Physics: Conference Series (Vol. 1716, No. 1, p. 012030). IOP Publishing. https://doi.org/10.1088/1742-6596/1716/1/012030
Chen, Y., Shan, Y., Chen, L., Huang, K., & Cao, D. (2018). Optimization of pure pursuit controller based on pid controller and low-pass filter. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3294-3299). IEEE Publishing. https://doi.org/10.1109/ITSC.2018.8569416
Coulter, R. C. (1992). Implementation of the Pure Pursuit Path Tracking Algorithm. Defense Technical Information Center.
Díaz, D., & Marín, L. (2020). VFH+ D: An improvement on the VFH+ algorithm for dynamic obstacle avoidance and local planning. IFAC-PapersOnLine, 53(2), 9590-9595. https://doi.org/10.1016/j.ifacol.2020.12.2450
Dong, X., Wang, M., Kang, C., Zhang, Y., Pan, W., & Gao, S. (2021). Improved auto-regulation VFH algorithm for obstacle avoidance of unmanned vehicles. In 2021 China Automation Congress (CAC) (pp. 6467-6472). IEEE Publishing. https://doi.org/10.1109/CAC53003.2021.9727888
Girbés, V., Armesto, L., Tornero, J., & Solanes, J. E. (2011). Smooth kinematic controller vs. pure-pursuit for non-holonomic vehicles. In Towards Autonomous Robotic Systems: 12th Annual Conference, TAROS 2011 (pp. 277-288). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_25
Huang, Y., Tian, Z., Jiang, Q., & Xu, J. (2020). Path tracking based on improved pure pursuit model and pid. In 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT) (pp. 359-364). IEEE Publishing. https://doi.org/10.1109/ICCASIT50869.2020.9368694
Ibrahim, I. N., Izhevsk, K., Pavol, B., Aiman, A. A. M., Izhevsk, K., & Karam, A. (2017). Navigation control and stability investigation of a hexacopter equipped with an aerial manipulater. In Proceedings of the 2017 21st International Conference on Process Control, PC 2017 (pp. 204-209). IEEE Publishing. https://doi.org/10.1109/PC.2017.7976214
Li, H., Luo, J., Yan, S., Zhu, M., Hu, Q., & Liu, Z. (2019). Research on parking control of bus based on improved pure pursuit algorithms. In 2019 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES) (pp. 21-26). IEEE Publishing. https://doi.org/10.1109/DCABES48411.2019.00013
Pappas, P., Chiou, M., Epsimos, G.-T., Nikolaou, G., & Stolkin, R. (2020). Vfh+ based shared control for remotely operated mobile robots. In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 366-373). IEEE Publishing. https://doi.org/10.1109/SSRR50563.2020.9292585
Qinpeng, S., Zhonghua, W., Meng, L., Bin, L., Jin, C., & Jiaxiang, T. (2019). Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm. In 2019 Chinese Automation Congress (CAC) (pp. 4239-4244). IEEE Publishing. https://doi.org/10.1109/CAC48633.2019.8997258
Shan, Y., Yang, W., Chen, C., Zhou, J., Zheng, L., & Li, B. (2015). CF-Pursuit: A pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles. International Journal of Advanced Robotic Systems, 12(9), Article 134. https://doi.org/10.5772/61391
Snider, J. M. (2009). Automatic Steering Methods for Autonomous Automobile Path Tracking. Carnegie Mellon University.
Ulrich, I., & Borenstein, J. (1998). VFH+: Reliable obstacle avoidance for fast mobile robots. IEEE International Conference on Robotics and Automation, 2, 1572-1577. https://doi.org/10.1109/ROBOT.1998.677362
Ulrich, I., & Borenstein, J. (2000). VFH*: Local obstacle avoidance with look-ahead verification. Proceedings-IEEE International Conference on Robotics and Automation, 3, 2505-2511. https://doi.org/10.1109/ROBOT.2000.846405
Wang, H., Chen, X., Chen, Y., Li, B., & Miao, Z. (2019). Trajectory tracking and speed control of cleaning vehicle based on improved pure pursuit algorithm. In 2019 Chinese Control Conference (CCC) (pp. 4348-4353). IEEE Publishing. https://doi.org/10.23919/ChiCC.2019.8865255
Wang, R., Li, Y., Fan, J., Wang, T., & Chen, X. (2020). A novel pure pursuit algorithm for autonomous vehicles based on salp swarm algorithm and velocity controller. IEEE Access, 8, 166525-166540. https://doi.org/10.1109/ACCESS.2020.3023071
Wang, W. J., Hsu, T. M., & Wu, T. S. (2017). The improved pure pursuit algorithm for autonomous driving advanced system. In 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA) (pp. 33-38). IEEE Publishing. https://doi.org/10.1109/IWCIA.2017.8203557
Yang, Y., Li, Y., Wen, X., Zhang, G., Ma, Q., Cheng, S., Qi, J., Xu, L., & Chen, L. (2022). An optimal goal point determination algorithm for automatic navigation of agricultural machinery: Improving the tracking accuracy of the pure pursuit algorithm. Computers and Electronics in Agriculture, 194, Article 106760. https://doi.org/10.1016/j.compag.2022.106760
ISSN 0128-7680
e-ISSN 2231-8526