e-ISSN 2231-8526
ISSN 0128-7680
Mohammad Hamdani, Anak Agung Ngurah Ananda Kusuma, Dedy Irawan, Tahar Agastani and Xerandy
Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024
DOI: https://doi.org/10.47836/pjst.32.4.22
Keywords: Failover time, INA-CBT, network reliability, OMNET++, spanning tree protocols
Published on: 25 July 2024
As a country with the fourth largest population in the world prone to tsunami disasters, Indonesia needs a reliable, timely early warning system to mitigate the impact of disasters. Indonesia cable-based tsunameter (INA-CBT) is an undersea tsunami detection system comprising undersea pressure sensors and a shore station connected by underwater fiber optics designed to provide early warning to the threatened area. Since this system performs a critical role in disaster mitigation, the system must be resilient to link failure and deliver timely warning information. This system is still in its early implementation and still on a small scale. Network-wise, it uses a proprietary Layer 2 (L2) communication protocol. Extending such a network to a larger scale and assessing the system’s performance may introduce challenges due to high costs and offer less flexibility. This paper aims to address those challenges and presents a scalable simulation framework of the INA-CBT system by using L2 open protocols such as spanning tree protocol (STP) and rapid spanning tree protocol (RSTP). The framework is conducted in OMNET++ simulator. The experiment shows that the downtime duration using STP and RSTP is still below the allowed value. RSTP shows a faster failover time than STP, but RSTP downtime duration fluctuates compared to a steady one of STP. The experiments also demonstrated that the variation of downtime is affected by two aspects: the number of ocean bottom units (OBUs) in the network and the position of their blocked port.
Babu, S., & Kumar, P. A. R. (2022). A comprehensive survey on simulators, emulators, and testbeds for VANETs. International Journal of Communication Systems, 35(8), Article e5123. https://doi.org/https://doi.org/10.1002/dac.5123
Domenikiotis, C., Loukas, A., & Dalezios, N. R. (2003). The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods. Natural Hazards and Earth System Sciences, 3(1/2), 115–128. https://doi.org/10.5194/nhess-3-115-2003
Hamdani, M., Irawan, D., Kusuma, A. A. N. A., Agastani, T., & Iqbal, M. (2023). Preliminary assessment of using spanning tree open protocols in INA-CBT communication system. In P. H. Khotimah (Ed.), The 2022 International Conference on Computer, Control, Informatics and its Applications (pp. 6–10). Association for Computing Machinery (ACM). https://doi.org/10.1145/3575882.3575884
Iqbal, M., Suwandi, B., Diana, M., Dewi, M. F., Herminawan, F. W., Giyana, R. F., Anggraeni, S. P., Firdaus, M. Y., Wibawa, Y. P., Palokoto, T. B., Utama, R. P., Marianto, F. A., Hamidah, M., Rahardjo, S., Purnomo, E., & Yogantara, W. W. (2021, November 8-9). Performance analysis of Indonesia cable based tsunameter (INA-CBT) rokatenda ring topology. [Paper presentation]. IEEE Ocean Engineering Technology and Innovation Conference: Ocean Observation, Technology and Innovation in Support of Ocean Decade of Science (OETIC), Jakarta, Indonesia. https://doi.org/10.1109/OETIC53770.2021.9733745
Iwata, A., Hidaka, Y., Umayabashi, M., Enomoto, N., Arutaki, A., Takagi, K., Cavendish, D., & Izmailov, R. (2004). Global open Ethernet architecture for a cost-effective scalable VPN solution. IEICE Transactions on Communications, 87(1), 142–151.
Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In T. Imielinski, & H. F. Korth (Eds.), Mobile Computing (pp.153–181). Springer https://doi.org/10.1007/978-0-585-29603-6_5
Kaiser, F., & Witthaut, D. (2021). Topological theory of resilience and failure spreading in flow networks. Physical Review Research, 3(2), Article 23161. https://doi.org/10.1103/PhysRevResearch.3.023161
Kolarov, A., Sengupta, B., & Iwata, A. (2004, November 29 – December 3). Design of multiple reverse spanning trees in next generation of Ethernet-VPNs. [Paper presentation]. IEEE Global Telecommunications Conference, Dallas, USA. https://doi.org/10.1109/GLOCOM.2004.1378212
Kusuma, A. A. N. A., Agastani, T., Nugroho, T., Anggraeni, S. P., & Hartawan, A. R. (2022, December 6-7). Estimating MQTT performance in a virtual testbed of INA-CBT communication sub-system. [Paper presentation]. International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Bandung, Indonesia. https://doi.org/10.1109/ICRAMET56917.2022.9991213
Marchese, M., & Mongelli, M. (2012). Simple protocol enhancements of rapid spanning tree protocol over ring topologies. Computer Networks, 56(4), 1131–1151. https://doi.org/10.1016/j.comnet.2011.10.008
Mikada, H., Hirata, K., Matsumoto, H., Kawaguchi, K., Watanabe, T., Otsuka, R., & Morita, S. (2003, June 25-27). Scientific results from underwater earthquake monitoring using cabled observatories. [Paper presentation]. International Conference Physics and Control. Proceedings (Cat. No.03EX708), Tokyo, Japan. https://doi.org/10.1109/SSC.2003.1224100
Mupparapu, S. S., Bartos, R., & Haag, M. (2005, August 21-24). Performance evaluation of ad hoc protocols for underwater networks. [Paper presentation]. Fourteenth International Symposium on Unmanned Untethered Submersible Technology (UUST’05), Durham, USA.
Perlman, R. (1985). An algorithm for distributed computation of a spanningtree in an extended LAN. ACM SIGCOMM Computer Communication Review, 15(4), 44–53. https://doi.org/10.1145/318951.319004
Perlman, R. (2000). Interconnections: Bridges, Routers, Switches, and Internetworking Protocols. Addison Wesley.
Premod, D. M., Kumar, K. S. A., Joseph, K. S., Kumar, B. K. P., Miny, G., & Shenoi, V. S. (2013, October 23-25). Network design for submarine sonar systems. [Paper presentation]. Ocean Electronics (SYMPOL), Kochi, India. https://doi.org/10.1109/SYMPOL.2013.6701937
Privadi, A., Damara, D. R., Widati, P. L., & Triputra, F. R. (2021, November 8-9). Indonesia’s cable based tsunameter (CBT) system as an earthquake disaster mitigation system in East Nusa Tenggara. [Paper presentation]. IEEE Ocean Engineering Technology and Innovation Conference: Ocean Observation, Technology and Innovation in Support of Ocean Decade of Science (OETIC), Jakarta, Indonesia. https://doi.org/10.1109/OETIC53770.2021.9733734
Prytz, G. (2007, September 25-28). Network recovery time measurements of RSTP in an ethernet ring topology. [Paper presentation]. IEEE Conference on Emerging Technologies and Factory Automation (EFTA), Patras, Greece. https://doi.org/10.1109/EFTA.2007.4416924
Purwoadi, M. A., Anantasena, Y., Pandoe, W. W., Widodo, J., & Sakya, A. E. (2023, March 6-9). Introduction to Indonesian cable-based subsea tsunameter. [Paper presentation]. IEEE Underwater Technology (UT), Tokyo, Japan. https://doi.org/10.1109/UT49729.2023.10103368
Steinbach, T., Kenfack, H. D., Korf, F., & Schmidt, T. C. (2011, March 21-25). An extension of the OMNeT++ INET framework for simulating real-time ethernet with high accuracy. [Paper presentation]. Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, Barcelona, Spain.
Varga, A. (2010). OMNeT++. In K. Wehrle, M. Gunes & J. Gross (Eds.) Modeling and Tools for Network Simulation (pp. 35–59). Springer. https://doi.org/10.1007/978-3-642-12331-3_3
Wang, T., Wang, X., Wang, Z., Guo, C., Moran, B., & Zukerman, M. (2021). Optimal tree topology for a submarine cable network with constrained internodal latency. Journal of Lightwave Technology, 39(9), 2673–2683. https://doi.org/10.1109/JLT.2021.3057171
Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), Article 15274. https://doi.org/10.1038/s41598-020-72142-z
Zhang, L., Kim, T. H., Liu, C., Sun, M. T., & Lim, A. (2008, December 15-18). Traffic-aware routing tree for underwater 3-D geographic routing. [Paper presentation]. International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Sydney, Australia. https://doi.org/10.1109/ISSNIP.2008.4762036
ISSN 0128-7680
e-ISSN 2231-8526