PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (4) Jul. 2024 / JST-4470-2023

 

Optimum Parameters for Extraction of Cinnamomum verum Leaves Towards α-Glucosidase Inhibition

Leong Yao Shen, Norhayati Muhammad, Hariz Haikal Nasuha, Mohd Fadzelly Abu Bakar, Norazlin Abdullah and Nur Fazira Abdul Rahim

Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024

DOI: https://doi.org/10.47836/pjst.32.4.23

Keywords: Antidiabetic, Cinnamomum verum, extraction parameter, infusion, Response Surface Method (RSM)

Published on: 25 July 2024

Cinnamomum verum (kayu manis) is an herb that possesses antidiabetic properties and has been used for the treatment of diabetes traditionally. However, there is insufficient scientific data to provide optimum extraction parameters for C. verum leaves for antidiabetic activities. This research aims to determine the optimum extraction parameters of C. verum leaves towards α-glucosidase inhibition and evaluate the correlation between α-glucosidase inhibition, total phenolic content and DPPH radical scavenging activity. The C. verum was extracted with water through an infusion method under different temperatures (60.0°C, 77.5°C, 95.0°C) and extraction time lengths (10 minutes, 20 minutes, 30 minutes). The optimization process was designed using Design Expert software, which applied the Response Surface Method (RSM) and Central Composite Design (CCD). The analyses conducted were antidiabetic property (α-glucosidase inhibition assay), total phenolic content (TPC) (Folin-Ciocalteu colorimetric method) and antioxidant property (2,2-diphenyl-1-picrylhydrazyl, DPPH radical scavenging activity). Results showed that the obtained optimum extraction parameters for C. verum leaves (81.10°C, 19.54 minutes) exhibited α-glucosidase inhibition (87.30±0.67%), total phenolic content (0.12±0.00 mg GAE/g) and DPPH radical scavenging activity (51.25±0.48%). The α-glucosidase inhibition positively correlates with DPPH radical scavenging activity and total phenolic content. These findings have provided a positive relationship between extraction temperature and extraction time length on antidiabetic properties of C. verum leaf extract.

  • Alaraa, O., Hamid, N., & Azharic, N. (2018). Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Industrial Crops & Products, 122(1), 533–544. https://doi.org/10.1016/j.indcrop.2018.06.034

  • Akhtar, S., Nasir, J. A., Ali, A., Asghar, M., Majeed, R., & Sarwar, A. (2022). Prevalence of type-2 diabetes and prediabetes in Malaysia: A systematic review and meta-analysis. PloS One, 17(1), Article e0263139. https://doi.org/10.1371/journal.pone.0263139

  • Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Journal of Nature Protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102

  • Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), Article 2107. https://doi.org/10.3390/app12042107

  • Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4), Article 96. https://doi.org/10.3390/plants8040096.

  • Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), Article 1326. https://doi.org/10.3390/molecules27041326

  • Bisceglie, F., Pinelli, S., & Goldoni, M. (2014). Cinnamaldehyde and cumin aldehyde thiosemicarbazones and their copper and nickel complexes: a study to understand their biological activity. Inorganic Biochemistry, 140(1), 111–125. https://doi.org/10.1016/i.jinorgbio.2014.07.014

  • Carmen, S. M., Benjamin, F. A., Vicente, S. S., Julissa, S. B., Lisette A. F., Alejandra, A. D., & Maria, E. Z. (2022). Antioxidant and antimicrobial capacity of Maytenus boaria leaves recovery by infusion and solvent extraction. Electronic Journal of Biotechnology, 56, 47–53. https://doi.org/10.1016/j.ejbt.2022.02.002

  • Duarte, A. W., Bonugli-Santos, R. S. Duarte, A. L., & Gomes, E. (2021). Statistical experimental design applied to extracellular lipase production by the marine Antarctic yeast Leucosporidium. Biocatalysis and Agriculture Biotechnology, 32, 102-110. https://doi.org/10.1016/j.bcab.2021.101954

  • Doctor, N., Parker, G., Vang. K, Smith, M., Berkant, K., & Yang, Y. (2020). Stability and extraction of vanillin and coumarin under subcritical water conditions. Molecules, 25(5), Article 1061. https://doi.org/10.3390/molecules25051061

  • Dias, C., Fonseca, A. M., Amaro, A. L., Boas, A., Oliveira, A., & Santos, S. A. (2020). Natural-based antioxidant extracts as potential mitigators of fruit browning. Antioxidants, 9(8), Article 715. https://doi.org/10.3390/antiox9080715

  • Ervina, M., Lie, H. S., Diva, J., Caroline, Tewfik, S., & Tewfik, I. (2019). Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antidiabetic and antioxidant activities. Biocatalysis and Agricultural Biotechnology, 19, Article 101152. https://doi.org/10.1016/j.bcab.2019.101152

  • Fachriyah, E., Ariestiani. B., & Khikmah, L. (2018). Antidiabetic activity from cinnamaldehyde encapsulated by nanochitosan. Conference on Materials Science and Engineering, 349(1), 25–31. https://doi.org/10.1088/1757-899X/349/1/012048

  • Goyal, M., Kaur, H., Bhandari, M., Rizvanov, A. A., Khaiboullina, S. F., & Baranwal, M. (2018). Antioxidant and immune effects of water soluble polysaccharides isolated from Cinnamomum verum bark. Bio Nano Science, 8(3), 935–940. https://doi.org/10.1007/s12668-018-0542-3

  • Jakub, R., & Agnieszka, D. (2021). Application of response surface methodology (RSM) for the optimization of chromium (III) synergistic extraction by supported liquid membrane. Membranes, 11(11), Article 854. https://doi.org/10.3390/membranes11110854

  • Kunyanga, C. N., Imungi J. K., & Okoth, M. W. (2012). Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. Journal of Food Science and Technology, 45(2), 269–276. https://doi.org/10.1016/j.lwt.2011.08.006

  • Katarzyna, J., Karolina, J., Patrycja, K., Mateysz, B., & Izabela, G. (2019). Mineral composition and antioxidant potential in the common poppy (Papaver rhoeas) petal infusions. Biological Trace Element Research, 199, 371–381. https://doi.org/10.1007/s12011-020-02134-7

  • Kodagoda, Y. K., Jayasinghe, C. V., & Dharmadasa, R. M. (2023). In vitro antioxidant and antidiabetic potential of five spiral ginger (Costus specious (J. Koeing sm) populations available in Sri Lanka. Journal of Agriculture and Food Research, 12, Article 100553. https://doi.org/10.1016/j.jafr.2023.100553

  • Lee, Y. R., Lee, S. H., Jang, G. Y., Lee, Y. J., Kim, M. Y., Kim, Y. B., Lee, J., & Jeong, H. S. (2019). Antioxidative and antidiabetic effects of germinated rough rice extract in 3T3-L1 adipocytes and C57BLKS/J-db/db mice. Food & Nutrition Research, 63, 1-10. https://doi.org/10.29219/fnr.v63.3603

  • Liu, L., Zhao, Y., Chang, D., Xie, J., Ma, Z., Sun, Q., & Yin, H. (2018). Prediction of short-term pv power output and uncertainty analysis. Applied Energy, 228, 700–711. https://doi.org/10.1016/j.apenergy.2018.06.112

  • Matsumura, T., Kasai, M., & Hayashi, T. (2000). a-glucosidase inhibitors from Paraguayan natural medicine Nangapiry, the leaves of Eugenia uniflora. Journal of Pharmaceutical Biology, 38(4), 302–307. https://doi.org/10.1076/1388-0209(200009)3841-AFT302

  • Nguyen, Q. V., Tran, T. H., Pham, T. N., Thuoc, D. V., Cao, V. D., & Boo, K. H. (2019). Inhibitory effects of Bidens pilosa plant extracts on the growth of the bloom-forming alga Microcystis aeruginosa. Water, Air & Soil Pollution, 230(24), 1-16. https://doi.org/10.1007/s11270-019-4077-1

  • Ogurtsova, K., Guariguata, L., Barengo, N. C., Ruiz, P. L. D., Sacre, J. W., Karuranga, S., & Magliano, D. J. (2022). IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Research and Clinical Practice, 183, Article 109118. https://doi.org/10.1016/j.diabres.2021.109118

  • Pathak, R., & Sharma, H. (2021). A review on medicinal uses of Cinnamomum verum (Cinnamon). Journal of Drug Delivery and Therapeutics, 11(6-S), 161–166. https://doi.org/10.22270/jddt.v11i6-S.5145

  • Rahim, N. F. A, Muhammad, N., & Abdullah, N. (2022). Optimum extraction condition of Anacardium occidentale on antiurolithiatic activities (in-vitro). Sains Malaysiana, 51(4), 1099–1109. http://doi.org/10.17576/jsm-2022-5104-12

  • Romero, E. F., Chavez-Quintana, S. G., & Siche, R. (2020). The kinetics of total phenolic content and monomeric flavan-3-ols during the roasting process of Criollo cocoa. Antioxidants, 9(2), Article 146. https://doi.org/10.3390/antiox9020146

  • Singab, A. N., Youssef, F. S., & Ashour, M. L. (2014). Medicinal plants with potential antidiabetic activity and their assessment. Medicinal and Aromatic Plants, 3(151), 2167–0412. http://dx.doi.org/10.4172/2167-0412.1000151

  • Singh, N., Rao, A. S., Nandal, A., Kumar, S., Yadav, S. S., Ganaie, S. A., & Narasimhan, B. (2020). Phytochemical and pharmacological review of Cinnamomum verum J. persl-a versatile spice used in food and nutrition. Food Chemistry, 338, Article 127773. https://doi.org/10.1016/j.foodchem.2020.127773

  • Sotiropoulou, N. S., Megremi, S. F., & Tarantilis, P. (2020). Evaluation of antioxidant activity, toxicity, and phenolic profile of aqueous extracts of chamomile (Matricaria chamomilla L.) and sage (Salvia officinalis L.) prepared at different temperatures. Applied Sciences, 10(7), Article 2270. https://doi.org/10.3390/app10072270

  • Tatipamula, V. B., & Kukavica, B. (2021). Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochemistry & Function, 39(8), 926–944. https://doi.org/10.1002/cbf.3667

  • Vinci, G., D’Ascenzo, F., Maddaloni, L., Antonia, S., & Tiradritti, M. (2022). The influence of green and black tea infusion parameters on total polyphenol content and antioxidant activity by ABTS and DPPH assays. Beverages, 8(2), Article 18. https://doi.org/10.3390/beverages8020018

  • Wairata, J., Fadlan, A., Purnomo, A. S., Taher, M., & Ersam, T. (2022). Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia forbesii king: A correlation study. Arabian Journal of Chemistry, 15(2), Article 103541. https://doi.org/10.1016/j.arabjc.2021.103541