PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (4) Jul. 2024 / JST-4665-2023

 

Borderline-DEMNET: A Workflow for Detecting Alzheimer’s and Dementia Stage by Solving Class Imbalance Problem

Neetha Papanna Umalakshmi, Simran Sathyanarayana, Pushpa Chicktotlikere Nagappa, Thriveni Javarappa and Venugopal Kuppanna Rajuk

Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024

DOI: https://doi.org/10.47836/pjst.32.4.10

Keywords: Alzheimer’s disease, Borderline-SMOTE, dementia, DEMNET model, evaluation matrices

Published on: 25 July 2024

Alzheimer’s Disease (AD) is the leading cause of dementia, a broad term encompassing memory loss and other cognitive impairments. Although there is no known cure for dementia, managing specific symptoms associated with it can be effective. Mild dementia stages, including AD, can be treated, and computer-based techniques have been developed to aid in early diagnosis. This paper presents a new workflow called Borderline-DEMNET, designed to classify various stages of Alzheimer’s/dementia with more than three classes. Borderline-SMOTE is employed to address the issue of imbalanced datasets. A comparison is made between the proposed Borderline-DEMNET workflow and the existing DEMNET model, which focuses on classifying different dementia and AD stages. The evaluation metrics specified in the paper are used to assess the results. The framework is trained, tested, and validated using the Kaggle dataset, while the robustness of the work is checked using the ADNI dataset. The proposed workflow achieves an accuracy of 99.17% for the Kaggle dataset and 99.14% for the ADNI dataset. In conclusion, the proposed workflow outperforms previously identified models, particularly in terms of accuracy. It also proves that selecting a proper class balancing technique will increase accuracy.

  • ADNI. (2021). Alzheimer’s Disease Neuroimaging Initiative. https://adni.loni.usc.edu/

  • Charan, M. (2022). Alzheimer’s Disease 5 Class Dataset ADNI. Kaggle. https://www.kaggle.com/datasets/madhucharan/alzheimersdisease5classdatasetadni

  • Ali, A., Shamsuddin, S. M., & Ralescu, A. (2013). Classification with class imbalance problem: A review. International Journal Advance Computing Application, 5(3), 176-204.

  • Alinsaif, S., & Lang, J. (2021). 3D shearlet-based descriptors combined with deep features for the classification of Alzheimer’s disease based on MRI data. Computers in Biology and Medicine, 138, Article 104879. https://doi.org/10.1016/j.compbiomed.2021.104879

  • Alzheimer’s Association. (2023). Alzheimer’s Disease Facts and Figures. https://www.alz.org/alzheimers-dementia/facts-figures

  • Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., Filippi, M., & Alzheimer’s disease neuroimaging initiative (2019). Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage: Clinical, 21, Article 101645. https://doi.org/10.1016/j.nicl.2018.101645

  • Basheera, S., & Ram, M. S. S. (2019). Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5(1), 974-986. https://doi.org/10.1016/j.trci.2019.10.001

  • Bi, J., & Zhang, C. (2019). An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. Knowledge-Based Systems, 158, 81-93. https://doi.org/10.1016/j.knosys.2018.05.037

  • Han, Hui., Wang, Wen-Yuan & Mao, Bing-Huan. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In D. S. Huang, X.P. Zhang, & G. B. Huang (Eds.), Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science (Vol. 3644, p. 878-887). Springer. https://doi.org/10.1007/11538059_91

  • Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. E. (2005). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25-36.

  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Laak, J. A. V. D., Ginneken, B. V., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005

  • Liu, L., Wu, X., Li, S., Li, Y., Tan, S., & Bai, Y. (2022). Solving the class imbalance problem using ensemble algorithm: Application of screening for aortic dissection. BMC Medical Informatics and Decision Making Volume, 22 Article 82. https://doi.org/10.1186/s12911-022-01821-w

  • Monsour, R., Dutta, M., Mohamed, A. Z., Borkowski, A., & Viswanadhan, N. A. (2022). Neuroimaging in the era of artificial intelligence: Current applications. Federal Practitioner, 39(1), 14-20. https://doi.org/10.12788/fp.0231

  • Murugan, S., Venkatesan, C., Sumithra, M. G., Gao, X. Z., Elakkiya, B., Akila, M., & Manoharan, S. (2021). DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access, 9, 90319-90329. https://doi.org/10.1109/ACCESS.2021.3090474

  • National Institute on Aging. (2021). Alzheimer’s disease fact sheet. https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet

  • Neetha, P. U., Simran, S., Sunilkumar, G., Pushpa, C. N., Thriveni, J., & Venugopal, K. R. (2022). D-DEMNET framework for classifying the Alzheimer’s disease for detection. In H. L. Gururaj, M. R. Pooja & F. Francesco (Eds.), Recent trends in computational sciences. Proceedings of the Fourth Annual International Conference on Data Science, Machine Learning and Blockchain Technology (pp. 1-5). CRC Press. https://doi.org/doi: 10.1201/9781003363781-3

  • Prajapati, R., Khatri, U., & Kwon, G. R. (2021). An efficient deep neural network binary classifier for Alzheimer’s disease classification. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 231-234). IEEE Publishing. https://doi.org/10.1109/ICAIIC51459.2021.9415212

  • Pushpa, C. N., Patil, A., Thriveni, J., Venugopal, K. R., & Patnaik, L. M. (2013, December). Web page recommendations using radial basis neural network technique. In 2013 IEEE 8th International Conference on Industrial and Information Systems (pp. 501-506). IEEE Publishing. https://doi.org/10.1109/ICIInfS.2013.6732035

  • Pushpa, C. N., Thriveni, J., Venugopal, K. R., & LM, P. (2013). Web search engine based semantic similarity measure between words using pattern retrieval algorithm. Computer Science & Information Technology, 1-11. https://doi.org/10.5121/csit.2013.3101

  • Raju, M., Gopi, V. P., & S., A. V. (2021). Multi-class classification of Alzheimer’s disease using 3DCNN features and multilayer perceptron. In 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 368-373). IEEE Publishing. https://doi.org/10.1109/WiSPNET51692.2021.9419393

  • Raju, M., Thirupalani, M., Vidhyabharathi, S., & Thilagavathi, S. (2021, March). Deep learning based multilevel classification of Alzheimer’s disease using MRI scans. In IOP Conference Series: Materials Science and Engineering (Vol. 1084, No. 1, pp. 012017). IOP Publishing. https://doi.org/10.1088/1757-899X/1084/1/012017

  • Richhariya, B., Tanveer, M., Rashid, A. H., & Alzheimer’s disease neuroimaging initiative. (2020). Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomedical Signal Processing and Control, 59, Article 101903. https://doi.org/10.1016/j.bspc.2020.101903

  • Sarvesh, D. (2019). Alzheimer’s dataset (4 class of images). Kaggle. https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images

  • Suganthe, R. C., Geetha, M., Sreekanth, G. R., Gowtham, K., Deepakkumar, S., & Elango, R. (2021). Multiclass classification of Alzheimer’s disease using hybrid deep convolutional neural network. NVEO-Natural Volatiles & Essential Oils Journal, 8(5), 145-153.

  • Sun, Y., Que, H., Cai, Q., Zhao, J., Li, J., Kong, Z., & Wang, S. (2022). Borderline SMOTE algorithm and feature selection-based network anomalies detection strategy. Energies, 15(13), Article 4751. https://doi.org/10.3390/en15134751

  • Wang, H., Shen, Y., Wang, S., Xiao, T., Deng, L., Wang, X., & Zhao, X. (2019). Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing, 333, 145-156. https://doi.org/10.1016/j.neucom.2018.12.018

  • World Health Organization. (2023). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia

  • Zeng, H. M., Han, H. B., Zhang, Q. F., & Bai, H. (2021). Application of modern neuroimaging technology in the diagnosis and study of Alzheimer’s disease. Neural Regeneration Research, 16(1), 73-79. https://doi.org/10.4103/1673-5374.286957