e-ISSN 2231-8526
ISSN 0128-7680
Li Ting Lee, Arnold Ang, Ibrahim Mahmood, Ahmed AbdulKareem Najm, Adura Mohd Adnan, Shazrul Fazry and Douglas Law
Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024
DOI: https://doi.org/10.47836/pjst.32.6.23
Keywords: Antibiotics, antimicrobial peptides, aquatic life, human health, microbes
Published on: 25 October 2024
Antimicrobial peptides (AMPs), sourced from various organisms, including aquatic life, are promising alternatives to combat antibiotic resistance. Their investigation is essential amid global antibiotic resistance concerns. The invaluable impact of antibiotics on human health, having saved numerous lives, is currently at risk. The growing global incidence of antibiotic-resistant bacteria poses a serious challenge to their ability to effectively treat various illnesses. This situation demands immediate attention and the exploration of alternative medical solutions. One of the most promising alternatives to antibiotics is antimicrobial peptides (AMPs), which can treat bacterial infections, particularly those brought by multi-drug-resistant pathogens. With a particular focus on their antimicrobial properties, this systematic review aims to evaluate and classify recent AMPs isolated from aquatic organisms. This review advances knowledge of these aquatic life-derived AMPs’ potential as alternatives to conventional antibiotics by examining their unique antibacterial characteristics and modes of action. A systematic review of articles published in English between 2014 and 2024 was carried out in the Science Direct, PubMed NCBI and Google Scholar databases using keywords and inclusion and exclusion criteria. A total of 33 potential AMPs isolated from aquatic organisms had been reported, and 21 of the AMPs were reported to have functional antimicrobial activities. Continuous research and study of natural substances, particularly AMPs, remain critical in pursuing alternatives to conventional antibiotics for effective treatments in combating antibiotic resistance. Therefore, ongoing research holds significant importance in identifying and harnessing the potential of AMPs for future medical applications.
Anbuchezian, R., Ravichandran, S., Karthick Rajan, D., Tilivi, S., & Prabha Devi, S. (2018). Identification and functional characterization of antimicrobial peptide from the marine crab Dromia dehaani. Microbial Pathogenesis, 125, 60–65. https://doi.org/https://doi.org/10.10 16 /j.micpath.2018.08.056
Baiden, N., Gandini, C., Goddard, P., & Sayanova, O. (2023). Heterologous expression of antimicrobial peptides S-thanatin and bovine lactoferricin in the marine diatom Phaeodactylum tricornutum enhances native antimicrobial activity against Gram-negative bacteria. Algal Research, 69, Article 102927. https://doi.org/10.1016/j.algal.2022.102927
Batoni, G., Maisetta, G., & Esin, S. (2016). Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(5), 1044-1060. https://doi.org/10.1016/j.bbamem.2015.10.013
Bo, J., Yang, Y., Zheng, R., Fang, C., Jiang, Y., Liu, J., Chen, M., Hong, F., Bailey C. Segner, H., & Wang, K. (2019). Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish & Shellfish Immunology, 93,1007-1017. https://doi.org/10.1016/j.fsi.2019.08.054
Buonocore, F., Picchietti, S., Porcelli, F., Della Pelle, G., Olivieri, C., Poerio, E., Bugli, F., Menchinelli, G., Sanguinetti, M., Bresciani, A., Gennari, N., Taddei, A. R., Fausto, A. M., & Scapigliati, G. (2019). Fish-derived antimicrobial peptides: Activity of a chionodracine mutant against bacterial models and human bacterial pathogens. Developmental & Comparative Immunology, 96, 9–17. https://doi.org/10.1016/j.dci.2019.02.012
Büyükkiraz, M. E., & Kesmen, Z. (2022). Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of Applied Microbiology, 132(3), 1573-1596.https://doi.org/10.1111/jam.15314
Cen, X., Liu, B., Zhang, G., Liu, H., Yao, G., He, M., & Liu, W. (2023). Antimicrobial peptide in giant Triton snail Charonia tritonis: mRNA profiles for tissues and its potential antibacterial activity. Fish & Shellfish Immunology, 136, Article 108734. https://doi.org/https://doi.org/ 10.1016/ j.fsi.2023.108734
Chang, S. M., Matchar, D. B., Smetana, G. W., & Umscheid, C. A. (Eds.). (2012). Methods guide for medical test reviews. Agency for Healthcare Research and Quality.
Chee, P. Y., Mang, M., Lau, E. S., Tan, L. T. H., He, Y. W., Lee, W. L., Pusparajah, P., Chan, K., Lee, L., & Goh, B. H. (2019). Epinecidin-1, an antimicrobial peptide derived from grouper (Epinephelus coioides): Pharmacological activities and applications. Frontiers in microbiology, 10, Article 2631. https://doi.org/10.3389%2Ffmicb.2019.02631
Chen, B., Fan, D. Q., Zhu, K. X., Shan, Z. G., Chen, F. Y., Hou, L., Cai, L., & Wang, K. J. (2015). Mechanism study on a new antimicrobial peptide Sphistin derived from the N-terminus of crab histone H2A identified in haemolymphs of Scylla paramamosain. Fish & Shellfish Immunology, 47(2), 833–846. https://doi.org/10.1016/j.fsi.2015.10.010.
Cipolari, O. C., de Oliveira Neto, X. A., & Conceição, K. (2020). Fish bioactive peptides: A systematic review focused on sting and skin. Aquaculture, 515, Article 734598. https://doi.org/10.1016/j.aquaculture.2019.734598
Destoumieux-Garzón, D., Rosa, R. D., Schmitt, P., Barreto, C., Vidal-Dupiol, J., Mitta, G., Gueguen, Y., & Bachere, E. (2016). Antimicrobial peptides in marine invertebrate health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1695), Article 20150300. https://doi.org/10.1098%2Frstb.2015.0300
Falanga, A., Lombardi, L., Franci, G., Vitiello, M., Iovene, M. R., Morelli, G., Galdiero, M., & Galdiero, S. (2016). Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. International Journal of Molecular Sciences, 17(5), Article 785. https://doi.org/10.3390/ijms17050785
Ganz, T. (2002). Antimicrobial polypeptides in host defense of the respiratory tract. The Journal of Clinical Investigation, 109(6), 693-697. https://doi.org/10.1172/JCI15218
García-Beltrán, J. M., Arizcun, M., & Chaves-Pozo, E. (2023). Antimicrobial peptides from photosynthetic marine organisms with potential application in aquaculture. Marine Drugs, 21(5), Article 290. https://doi.org/10.3390/md2 21(5), 290. 1050290
Gayathri, K. V., Aishwarya, S., Kumar, P. S., Rajendran, U. R., & Gunasekaran, K. (2021). Metabolic and molecular modelling of zebrafish gut biome to unravel antimicrobial peptides through metagenomics. Microbial Pathogenesis, 154, Article 104862. https://doi.org/10.1016/j.micpath.2021.104862
Giuliani, A., Pirri, G., & Nicoletto, S. (2007). Antimicrobial peptides: An overview of a promising class of therapeutics. Central European Journal of Biology, 2(1), 1-33. https://doi.org/10.2478/s11535-007-0010-5
Hafeez, A. B., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: An update on classifications and databases. International Journal of Molecular Sciences, 22(21), Article 11691. https://doi.org/10.3390/ijms222111691
Hallock, K. J., Lee, D. K., & Ramamoorthy, A. (2003). MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophysical Journal, 84(5), 3052-3060. https://doi.org/10.1016/S0006-3495(03)70031-9
Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, Article 2259. https://doi.org/10.3389/fmicb.2020.582779
Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3), 491-511. https://doi.org/10.1128%2FCMR.00056-05
Kang, H. K., Seo, C. H., & Park, Y. (2015). Marine peptides and their anti-infective activities. Marine Drugs, 13(1), 618-654. https://doi.org/10.3390/md13010618
Law, D., Najm, A. A., Chong, J. X., K’ng, J. Z., Amran, M., Ching, H. L., Wong, R. R., Leong, M. H., Mahdi, I. M., & Fazry, S. (2023). In silico identification and in vitro assessment of a potential anti-breast cancer activity of antimicrobial peptide retrieved from the ATMP1 anabas testudineus fish peptide. PeerJ, 11, Article e15651. https://doi.org/10.7717/peerj.15651
Lazzaro, B. P., Zasloff, M., & Rolff, J. (2020). Antimicrobial peptides: Application informed by evolution. Science, 368(6490), Article eaau5480. https://doi.org/10.1126/science.aau5480
Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), Article 3919
Lipsky, B. A., Holroyd, K. J., & Zasloff, M. (2008). Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clinical Infectious Diseases. 47(12), 1537-1545. https://doi.org/10.1086/593186.
Luo, Y., & Song, Y. (2021). Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. International Journal of Molecular Sciences, 22(21), Article 11404. https://doi.org/10.3390/ijms222111401
Ma, H., Yang, L., Tian, Z., Zhu, L., Peng, J., Fu, P., Xiu, J., & Guo, G. (2023). Antimicrobial peptide AMP-17 exerts anti–Candida albicans effects through ROS-mediated apoptosis and necrosis. International Microbiology, 26(1), 81-90. https://doi.org/10.1007/s10123-022-00274-5.
Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, Article 235805. https://doi.org/10.3389/fcimb.2016.00194
Mba, I. E., & Nweze, E. I. (2022). Antimicrobial peptides therapy: An emerging alternative for treating drug-resistant bacteria. The Yale Journal of Biology and Medicine, 95(4), 445–463.
Méndez-Samperio, P. (2013). Recent advances in the field of antimicrobial peptides in inflammatory diseases. Advanced Biomedical Research, 2(1), Article 50. https://doi.org/10.4103/2277-9175.114192
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, Article b2535. https://doi.org/10.1136/bmj.b2535
Moretta, A., Scieuzo, C., Petrone, A. M., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A., & Falabella, P. (2021). Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology, 11, Article 668632. https://doi.org/10.3389/fcimb.2021.668632
Munn, Z., Moola, S., Lisy, K., Riitano, D., & Tufanaru, C. (2015). Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. International Journal of Evidence-based Healthcare, 13(3), 147–153. https://doi.org/10.1097/xeb.0000000000000054
Najm, A. A. K., Azfaralariff, A., Dyari, H. R. E., Othman, B. A., Shahid, M., Khalili, N., Law, D., Alwi, S. S. S., & Fazry, S. (2021). Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Scientific Reports, 11(1), Article 23182. https://doi.org/10.1038/s41598-021-02007-6
Narula, P., Kiruthika, S., Chowdhari, S., Vivekanandan, P., & Chugh, A. (2023). Inhibition of hepatitis B virus (HBV) by Tachyplesin, a marine antimicrobial cell-penetrating peptide. Pharmaceutics, 15(2), Article 672. https://doi.org/10.3390/pharmaceutics15020672
Nyberg, F., Carlsson, A., & Hallberg, M. (2013). Casomorphins/Hemorphins. In A. J. Kastin (Ed.) Handbook of Biologically Active Peptides (pp. 1550–1555). Academi Press. https://doi.org/10.1016/b978-0-12-385095-9.00211-6
Oh, H. Y., Go, H. J., & Park, N. G. (2020). Identification and characterization of SaRpAMP, a 60S ribosomal protein L27-derived antimicrobial peptide from amur catfish, Silurus asotus. Fish & Shellfish Immunology, 106, 480–490. https://doi.org/https://doi.org/10.1016 /j.fsi.2020.06.038
Okella, H., Ikiriza, H., Ochwo, S., Ajayi, C. O., Ndekezi, C., Nkamwesiga, J., Kaggwa, B., Aber, J., Mtewa, A. G., Koffi, T. K., Odongo, S., Vertommen, D., Kato, C. D., & Ogwang, P. E. (2021). Identification of antimicrobial peptides isolated from the skin mucus of African Catfish, Clarias gariepinus (Burchell, 1822). Frontiers in Microbiology, 12, Article 794631. https://doi.org/10.3389/fmicb.2021.794631
Pelle, G. D., Perà, G., Belardinelli, M. C., Gerdol, M., Felli, M., Crognale, S., Scapigliati, G., Ceccacci, F., Buonocore, F., & Porcelli, F. (2020) Trematocine, a novel antimicrobial peptide from the antarctic fish Trematomus bernacchii: Identification and biological activity. Antibiotics, 9(2), Article 66. https://doi.org/10.3390/antibiotics9020066.
Peng, K. C., Lee, S. H., Hour, A. L., Pan, C. Y., Lee, L. H., & Chen, J. Y. (2012). Five different piscidins from Nile tilapia, Oreochromis Niloticus: Analysis of their expressions and biological functions. PLoSOne, 7(11), Article e50263. https://doi.org/10.1371/journal.pone.0050263
Raju, V. S., Sarkar, P., Pachaiappan, R., Paray, B. A., Al-Sadoon, M. K., & Arockiaraj, J. (2020). Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. Fish & Shellfish Immunology, 99, 368-378. https://doi.org/10.1016/j.fsi.2020.02.027
Rima, M., Fajloun, Z., Sabatier, J. M., Bechinger, B., & Naas, T. (2021). Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics, 10(9), Article 1095. https://doi.org/10.3390/antibiotics10091095
Rončević, T., Gerdol, M., Mardirossian, M., Maleš, M., Cvjetan, S., Benincasa, M., Maravić, A., Gajski, G., Krce, L., Aviani, I., Hrabar, J., Trumbić, Ž., Derks, M., Pallavicini, A., Weingarth, M., Zoranić, L., Tossi, A., & Mladineo, I. (2022). Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Acta Biomaterialia, 146, 131–144. https://doi.org/https://doi.org/10.1016/j.actbio. 2022.04.025
Russell, C. K., & Gregory, D. M. (2003). Evaluation of qualitative research studies. Evidence-Based Nursing, 6(2), 36-40. https://doi.org/10.1136/ebn.6.2.36
Semreen, M. H., El-Gamal, M. I., Abdin, S., Alkhazraji, H., Kamal, L., Hammad, S., El-Awady, F., Waleed, D., & Kourbaj, L. (2018). Recent updates of marine antimicrobial peptides. Saudi Pharmaceutical Journal, 26(3), 396–409. https://doi.org/10.1016/j.jsps.2018.01.001
Sepulveda, J., & Wilson, M. (2019). The use and abuse of antibiotics. Institute for Global Health Sciences. https://globalhealthsciences.ucsf.edu/news/use-and-abuse-antibiotics
Subramaniam, G., Yew, X. Y., & Sivasamugham, L. A. (2020). Antibacterial activity of Cymbopogon citratus against clinically important bacteria. South African Journal of Chemical Engineering, 34, 26–30. https://doi.org/10.1016/j.sajce.2020.05.010
Tortorella, A., Leone, L., Lombardi, A., Pizzo, E., Bosso, A., Winter, R., Petraccone, L., Del Vecchio, P., & Oliva, R. (2023). The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III. Scientific Reports, 13(1), Article 3733. https://doi.org/10.1038/s41598-023-29984-0
Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R., Mitra, S., Emran, T. B., Dhama, K., Ripon, Md. K., Gajdács, M., Sahibzada, M. U., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
Vitali, A. (2018). Antimicrobial peptides derived from marine sponges. American Journal of Clinical Microbiology and Antimicrobials, 1(1), Article 1006.
Waghu, F. H., & Idicula-Thomas, S. (2019). Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Science, 29(1), 36-42 https://doi.org/10.1002/pro.3714
Walsh, D., & Downe, S. (2006). Appraising the quality of qualitative research. Midwifery, 22(2), 108–119. https://doi.org/10.1016/j.midw.2005.05.004
Wang, S., Fan, L., Pan, H., Li, Y., Qiu, Y., & Lu, Y. (2023). Antimicrobial peptides from marine animals: Sources, structures, mechanisms and the potential for drug development. Frontiers in Marine Science, 9, Article 1112595. https://doi.org/10.3389/fmars.2022.1112595
Wei, O. Y., Xavier, R., & Marimuthu, K. (2010). Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). European Review for Medical and Pharmacological Sciences, 14(8), 675–681.
Wu, Y., Wang, H., & Chu, P. K. (2023). Enhancing macrophages to combat intracellular bacteria. The Innovation Life, 1(2), 100027-100028. https://doi.org/10.59717/j.xinn-life.2023.100027
Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., Chen, Z. S., Yang, H., & Sun, L. (2023). Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates, 68, Article 100954. https://doi.org/10.1016/j.drup.2023.100954
Ye, Z., Fu, L., Li, S., Chen, Z., Ouyang, J., Shang, X., Liu, Y., Gao, L., & Wang, Y. (2024). Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Nature Communications, 15(1), Article 7319. https://doi.org/10.1038/s41467-024-51730-x
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395. https://doi.org/10.1038/415389a
Zheng, X., Yuan, C., Zhang, Y., Zha, S., Mao, F., & Bao, Y. (2022). Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. Fish & Shellfish Immunology, 125, 84-89. https://doi.org/10.1016/j.fsi.2022.05.007
ISSN 0128-7680
e-ISSN 2231-8526