Home / Regular Issue / JST Vol. 44 (2) May. 2021 / JTAS-2031-2020

 

Effect of Screen House on Disease Severity and Coat Protein Diversity of Begomovirus-infected Capsicum frutescens L. ‘Cempluk’ from Indonesia

Aprilia Sufi Subiastuti, Anggun Cinditya Putri, Cindy Gresyllia Permadani and Budi Setiadi Daryono

Pertanika Journal of Science & Technology, Volume 44, Issue 2, May 2021

DOI: https://doi.org/10.47836/pjtas.44.2.11

Keywords: Begomovirus, coat protein, disease severity, Pepper yellow leaf curl Indonesia virus, plant defense mechanism, plant hormones

Published on: 28 May 2021

Chili can be infected by Begomovirus through whiteflies (Bemisia tabaci) serving as a vector insect. Begomovirus infection causes dwarf plants and yellow curly leaves. The molecular detection of Begomovirus coat protein gene may serve as a preliminary identification of Begomovirus. This study was conducted to observe the differences in the symptom severity of Begomovirus infection in chilies (Capsicum frutescens L. ‘Cempluk’) planted inside and outside a screen house. This study also observed whether or not using a screen house in chili farming affects the diversity of the coat protein of Begomovirus. Symptom observation and sampling were conducted in Madurejo, Prambanan, Sleman. Molecular detection was performed by amplifying the coat protein (CP) gene using the universal primer Krusty and Homer. Results showed 7 plant samples with DNA bands ± 550 bp and confirmed that the plants were positively infected with Begomovirus. The amplified bands were purified and sequenced. The nucleotide sequences were analyzed using BLASTn, followed by phylogenetic analysis using MEGA. Planting chili in the screen house resulted in low disease severity and good crop conditions. The coat protein sequence showed different strains of Begomovirus infected the chili plants inside and outside the screen house. Pepper yellow leaf curl Indonesia virus (PepYLCIV) was found inside the screen house while PepYLCIV [Ageratum] was dominant outside the screen house. Both strains are closely related to other Pepper yellow leaf curl virus (PepYLCV) from various regions in Indonesia. Optical manipulation using an ultraviolet screen or screen house was effective in reducing Begomovirus infection and improving plant performance.

  • Antignus, Y. (2010). Optical manipulation for control of Bemisia tabaci and its vectored viruses in the greenhouse and open field. In P. A. Stansly & S. E. Naranjo (Eds.), Bemisia: Bionomics and management of a global pest (pp. 349–356). Springer. https://doi.org/10.1007/978-90-481-2460-2_13

  • Asselbergh, B., Achuo, A. E., Hofte, M., & van Gijegem, F. (2008). Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Molecular Plant Pathology, 9(1), 11-24. https://doi.org/10.1111/j.1364-3703.2007.00437.x

  • Audenaert, K., de Meyer, G. B., & Hofte, M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology, 128(2), 491-501. https://doi.org/10.1104/pp.010605

  • Bhattacharyya, D., & Chakraborty, S. (2018). Chloroplast: The Trojan horse in plant–virus interaction. Molecular Plant Pathology, 19(2), 504-518. https://doi.org/10.1111/mpp.12533

  • Bock, C. H., El Jarroudi, M., Kouadio, L. A., Mackles, C., Chiang, K. S., & Delfosse, P. (2015). Disease severity estimates - Effects of rater accuracy and assessment methods for comparing treatments. Plant Disease, 99(8), 1104-1122. https://doi.org/10.1094/PDIS-09-14-0925-RE

  • Chakraborty, S., Pandel, P. K., Banerjee, M. K., Kallo, G., & Fauquet, C. M. (2003). Tomato leaf curl Gujarat virus, a new Begomovirus species causing a severe leaf curl disease of tomato in Vanarisi, India. Phytopathology, 93(12), 1485-1494. https://doi.org/10.1094/PHYTO.2003.93.12.1485

  • Daryono, B. S., & Natsuaki, K. T. (2002). Application of random amplified DNA markers for detection of resistant cultivars of melon (Cucumis melo L.) against cucurbit virus. Acta Horticulturae, 588, 321-329. https://doi.org/10.17660/ActaHortic.2002.588.52

  • González-Pérez, J. L., Espino-Gudiño, M. C., Torres-Pacheco, L., Guevara-González, R. G., Herrera-Ruiz, G., & Rodríguez-Hernández, V. (2011). Quantification of virus syndrome in chili peppers. African Journal of Biotechnology, 10(27), 5236-5250. https://doi.org/10.5897/AJB10.1165

  • Graham, A. P., Stewart, C. S., & Roye, M. E. (2007). First report of a begomovirus infecting two common weeds: Malvastrum americanum and Sida spinosa in Jamaica. Plant Pathology, 56(2), 340. https://doi.org/10.1111/j.1365-3059.2007.01527.x

  • Hernandez-Zepeda, C., Idris, A. M., Carnevali, G., Brown, J. K., & Moreno-Valenzuela, O. A. (2007). Preliminary identification and coat protein gene phylogenetic relationships of begomoviruses associated with native flora and cultivated plants from the Yucatan Peninsula of Mexico. Virus Genes, 35(3), 825-833. https://doi.org/10.1007/s11262-007-0149-1

  • Horowitz, A. R., Antignus, Y., & Gerling, D. (2011) Management of Bemisia tabaci whiteflies. In: W. M. O. Thompson (Ed.), The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants (pp. 293-322). Springer. https://doi.org/10.1007/978-94-007-1524-0_11

  • Islam, M. N., Sony, S., & Borna, R. (2012). Molecular characterization of mungbean yellow mosaic disease and coat protein gene in mungbean varieties of Bangladesh. Plant Tissue Culture Biotechnology, 22(1), 73-81. https://doi.org/10.3329/ptcb.v22i1.11263

  • Islam, S., Munshi, A. D., Mandal, B., Kumar, R., & Behera, T. K. (2010). Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica, 174(1), 83-89. https://doi.org/10.1007/s10681-010-0138-7

  • Kenyon, L., Tsai, W., Shih, S., & Lee, L. (2014). Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Research, 18, 104-113. https://doi.org/10.1016/j.virusres.2013.12.026

  • Khalil, R. R., Bassiouny, F. M., El-Doundoug, K. A., Abo-Elmaty S., & Yousef, M. S. (2014). A dramatic physiological and anatomical changes of tomato plants infecting with tomato yellow leaf curl geminivirus. Journal of Agricultural Technology, 10(5), 1213-1229.

  • Kon, T., Hidayat, S. H., Hase, S., Takahashi, H., & Ikegami, M. (2006). The natural occurrence of two distinct begomoviruses associated with DNAβ and a recombinant DNA in a tomato plant from Indonesia. Phytopathology, 96(5), 517-525. https://doi.org/10.1094/PHYTO-96-0517

  • Kumar, P., & Poehling, H. M. (2006). UV-blocking plastic films and nets influence vectors and virus transmission on screen house tomatoes in the humid tropics. Environmental Entomology, 35(4), 1069-1082. https://doi.org/10.1603/0046-225X-35.4.1069

  • Kumar, V., Palmer, C., McKenzie, C. L., & Osborne L. S. (2017). Whitefly (Bemisia tabaci) management program for ornamental plants. http://edis.ifas.ufl.edu

  • Kusumaningrum, F., Hartono, S., Sulandari, S., & Somowiyarjo, S. (2015). Infeksi ganda Begomovirus dan Crinivirus pada tanaman tomat di Kabupaten Magelang, Jawa Tengah [Begomovirus and Crinivirus double infection in tomato plants in Magelang Regency, Central Java]. Jurnal Perlindungan Tanaman Indonesia, 19(2), 60-64. https://doi.org/10.22146/jpti.17542

  • Kyallo, M., Ateka, E. M., Seruwagi, P. S., Ascencio-Ibanez, J. S., Ssemakula, M., Skilton, R., & Ndunguru, J. (2017). Infectivity of Deinbollia mosaic virus, a novel weed-infecting begomovirus in East Africa. Archives of Virology, 162(11), 3439-3445. https://doi.org/10.1007/s00705-017-3495-x

  • Lopez, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M., & Bertolini, E. (2008). Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. Current Issues Molecular Biology, 11(1), 13-46.

  • Mansoor, S., Briddon, R. W., Zafar, Y., & Stanley, J. (2003). Geminivirus disease complexes: An emerging threat. Trends on Plant Science, 8(3), 128-134. https://doi.org/10.1016/S1360-1385(03)00007-4

  • Maruthi, M. N., Rekha, A. R., Mirza, S. H., Alam, S. N., & Colvin, J. (2007). PCR-based detection and partial genome sequencing indicate high genetic diversity in Bangladeshi begomoviruses and their whitefly vector, Bemisia tabaci. Virus Genes, 34(3), 373-385. https://doi.org/10.1007/s11262-006-0027-2

  • Mascarin, G. M., Kobori, N. N., Quintela, E. D., & Delalibera Jr., I. D. (2013). The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biological Control, 66(3), 209-218. https://doi.org/10.1016/j.biocontrol.2013.05.001

  • Mohamed, M. A. (2012). Impact of planting dates, spaces and varieties on infestation of cucumber plants with whitefly, Bemisia tabaci (Genn.). The Journal of Basic and Applied Zoology, 65(1), 17- 20. https://doi.org/10.1016/j.jobaz.2012.01.003

  • Mubin, M., Briddon, R. W., & Mansoor, S. (2009). Diverse and recombinant DNA betasatellites are associated with a begomovirus disease complex of Digera arvensis, a weed host. Virus Research, 142(1-2), 208-212. https://doi.org/10.1016/j.virusres.2009.01.020

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamad, A., & Lu, G. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry, 45(6-7), 480-489. https://doi.org/10.1016/j.plaphy.2007.03.002

  • Revill, P. A., Ha, C. V., Porchun, S. C., Vu, M. T., & Dale, J. L. (2003). The complete nucleotide sequence of two distinct geminiviruses infecting cucurbits in Vietnam. Archives of Virology, 148(8), 1523-1541. https://doi.org/10.1007/s00705-003-0109-6

  • Rusli, E. S., Hidayat, S. H., Suseno, R., & Tjahjono, B. (1999). Geminivirus asal cabai: Kisaran inang dan cara penularan [Geminivirus from chili: Range of host and mode of transmission]. Bulletin HPT, 11(1), 126-131.

  • Sakamto., Kon, T., Hidayat, S, H., Ito, K., Hase, S., Takahashi, H., & Ikegami, M. (2005). Begomoviruses associated with leaf curl disease of tomato in Java, Indonesia. Journal of Phytopathology, 153(9), 562-566. https://doi.org/10.1111/j.1439-0434.2005.01020.x

  • Sakata, J., Shibuya, Y., & Sharma, P. (2008). Strains of a new bipartite Begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-vein-diseased ageratum in Indonesia. Archives of Virology, 153(12), 2307-2231. https://doi.org/10.1007/s00705-008-0254-z

  • Setiawati, W., Udiarto, B. K., & Soetiarso, T. A. (2005). Pengaruh varietas dan sistem tanam cabai merah terhadap penekanan populasi hama kutu kebul [Effect of varieties and planting systems of red chili on the suppression of whitefly populations]. Jurnal Hortikultura, 18(1), 55-61.

  • Shibuya, Y., Sakata, J., Sukamto, N., Kon, T., Sharma, P., & Ikegami, M. (2007). First report of Pepper yellow leaf curl Indonesia virus in Ageratum conyzoides in Indonesia. Plant Disease, 91(9), 1198. https://doi.org/10.1094/PDIS-91-9-1198B

  • Sinha, D. P., Saxena, S., Singh, M., & Tiwari, S. K. (2013). Phylogenetic relationship of coat protein genomic components of Chili leaf curl virus. Vegetable Science, 40(2), 149-154.

  • Snehi, S. K., Khan, M. S., Raj, S. K., & Prasad, V. (2011). Complete nucleotide sequence of Croton yellow vein mosaic virus and DNA-β associated with yellow vein mosaic disease of Jatropha gossypifolia in India. Virus Genes, 43, 93-101. https://doi.org/10.1007/s11262-011-0605-9

  • Spoel, S. H., Johnson, J. S, & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. PNAS, 104(47), 18842-18847. https://doi.org/10.1073/pnas.0708139104

  • Srivastava, A., Mangal, M., Saritha, R. K., & Kalia, P. (2017). Screening of chili (Capsicum spp.) lines for resistance to the begomoviruses causing chilli leaf curl disease in India. Crop Protection, 100, 177-185. https://doi.org/10.1016/j.cropro.2017.06.015

  • Subiastuti, A. S., Hartono, S., & Daryono, B. S. (2019). Detection and identification of Begomovirus infecting Cucurbitaceae and Solanaceae in Yogyakarta, Indonesia. Biodiversitas, 20(3), 738-744. https://doi.org/10.13057/biodiv/d200318

  • Sulandari, S., Hidayat, S. H., Suseno, R., Jumanto, H., & Sosromarsono. (2006). Deteksi dan kajian kisaran inang virus penyebab penyakit daun keriting kuning cabai [Detection and host range study of virus associated with pepper yellow leaf curl disease]. Hayati, 13(1), 1-6. https://doi.org/10.1016/S1978-3019(16)30371-0

  • Suleman, P., Al-Musallam, A., & Menezes, C. A. (2001). The effect of solute potential and water stress on black scorch caused by Chalara paradoxa and Chalara radicicola on date palms. Plant Disease, 85(1), 80-83. https://doi.org/10.1094/PDIS.2001.85.1.80

  • Tajul, M. I., Naher, K., Hossain, T., Siddiqui, Y., & Sariah, M. (2011). Tomato yellow leaf curl virus (TYLCV) alters the phytochemical constituents in tomato fruits. Australian Journal of Crop Sciences, 5(5), 575-581.

  • Tiwari, A. K., Sharma, P. K., Khan, M. S., Snehi, S. K., Raj, S. K., & Rao, G. P. (2010). Molecular detection and identification of Tomato leaf curl New Delhi virus isolate causing yellow mosaic disease in bitter gourd (Momordica charantia), a medicinally important plant in India. Medicinal Plants, 2(2), 117-123. https://doi.org/10.5958/j.0975-4261.2.2.018

  • Tsai, W. S., Shih, S. L., Green, S. K., Lee, L. M., Luther, G. C., Ratulangi, M., & Sembel, D. T. (2009). Identification of a new begomovirus associated with yellow leaf curl diseases of tomato and pepper in Sulawesi, Indonesia. Plant Disease, 93(3), 321. https://doi.org/10.1094/PDIS-93-3-0321C

  • Varma, A., & Malathi, V. G. (2003). Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology, 142(2), 145-146. https://doi.org/10.1111/j.1744-7348.2003.tb00240.x

  • Venkataravanappa, V., Reddy, C. N. L., Saha, S., & Reddy, M. K. (2018). Recombinant Tomato leaf curl New Delhi virus is associated with yellow vein mosaic disease of okra in India. Physiol Molecular Plant Pathology, 104, 108-118. https://doi.org/10.1016/j.pmpp.2018.10.004

  • Wang, R., Wang, J., Che, W., & Lhuo, C. (2018). First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. Journal of Integrated Agriculture, 17(1), 158-163. https://doi.org/10.1016/S2095-3119(16)61613-1

  • Wartig, L., Kheyr-pour, A., Noris, E., Kouchkovsky, F. D., Jouanneau, F., Gronenborn, B., & Jupin, I. (1997). Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: Roles of V1, V2 and C2 ORFs in viral pathogenesis. Virology, 228(2), 132-140. https://doi.org/10.1006/viro.1996.8406

  • Widarta, H., Hartono, S., Sulandari, S., Hertanto, C., & Anastasia, E. (2017). Pengendalian terpadu penyakit kerupuk pada tanaman tembakau di Klaten, Jawa Tengah [Integrated leafcurl disease control on tobacco plants in Klaten, Central Java]. Jurnal Perlindungan Tanaman Indonesia, 21(1), 10-15. https://doi.org/10.22146/jpti.19363

  • Zubair, M., Zaidi, S. S, Shakir, S., Amin, I., & Mansoor, S. (2017). An insight into Cotton leaf curl Multan betasatellite, the most important component of cotton leaf curl disease complex. Viruses, 9(10), 280. https://doi.org/10.3390/v9100280

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JTAS-2031-2020

Download Full Article PDF

Share this article

Recent Articles