e-ISSN 2231-8526
ISSN 0128-7680
Miiraa Muruga, Veknesh Arumugam and Muhammad Heikal Ismail
Pertanika Journal of Science & Technology, Volume 44, Issue 4, November 2021
DOI: https://doi.org/10.47836/pjtas.44.4.07
Keywords: Abelmoschus esculentus L., food waste treatment, pretreatment methods, soil additive, vermicomposting
Published on: 2 November 2021
Food waste (FW) has always been a significant issue faced by almost all countries worldwide. The rise in FW does not only influence one’s food supply, yet the greenhouse gas (GHG) emission such as methane (CH4) and carbon dioxide (CO2) gas leads to global warming and health issues. This paper reviews the primary FW treatments available in all countries. Most advanced countries have accomplished that the least cost and most efficient FW treatment is composting. Among all the composting methods available, vermicomposting (VC) that uses redworms (Eisenia fetida) produces nutrients rich bio-compost, as proven in the existing literature. Furthermore, bio-compost produced by the VC method nourishes plant growth. In this study, the primary research data sources are 78 scientific articles over the last few years. This research is the consensus on VC as the FW treatment. Besides, briefly discuss the FW pretreatment methods, the effect of bio-compost on soil properties, and their corresponding effects on the growth of Abelmoschus esculentus L.
Ahmad, A. A., Radovich, T. J. K., Nguyen, H. V., Uyeda, J., Arakaki, A., Cadby, J., Paull, R., Sugano, J., & Teves, G. (2016). Use of organic fertilizers to enhance soil fertility, plant growth, and yield in a tropical environment. https://www.intechopen.com/chapters/50720
Albanell, E., Plaixats, J., & Cabrero, T. (1988). Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes. Biology and Fertility of Soils, 6(3), 266–269. https://doi.org/10.1007/BF00260823
Álvarez-Gallego, C. J., Fdez-Güelfo, L. A., Romero Aguilar, M. de los Á., & García, L. I. R. (2015). Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant. International Journal of Molecular Sciences, 16(2), 3769–3782. https://doi.org/10.3390/ijms16023769
Angima, S., Noack, M., & Noack, S. (2011). Composting with worms. https://ir.library.oregonstate.edu/concern/open_educational_resources/p5547r80s
Apagu, A. B. (2012). Recycling biodegradable waste using composting technique. Journal of Environmental Science and Resources Management, 4, 40–49.
Arancon, N. Q., Edwards, C. A., Atiyeh, R., & Metzger, J. D. (2004). Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, 93(2), 139–144. https://doi.org/10.1016/j.biortech.2003.10.015
Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied Soil Ecology, 39(1), 91–99. https://doi.org/10.1016/j.apsoil.2007.11.010
Arancon, N. Q., Edwards, C. A., Bierman, P., Metzger, J. D., Lee, S., & Welch, C. (2003). Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries. Pedobiologia, 47(5–6), 731–735. https://doi.org/10.1078/0031-4056-00251
Argun, Y. A., Karacali, A., Calisir, U., & Kilinc, N. (2017). Composting as a waste management method. Journal of International Environmental Application and Science, 12(3), 244–255.
Aronson, E. L., & Allison, S. D. (2012). Meta-analysis of environmental impacts on nitrous oxide release in response to N amendment. Frontiers in Microbiology, 3, 272. https://doi.org/10.3389/fmicb.2012.00272
Arvanitoyannis, I. S., Kassaveti, A., & Ladas, D. (2008). Food waste treatment methodologies. In Waste management for the food industries (pp. 345-410). Elsevier Inc. https://doi.org/10.1016/B978-012373654-3.50009-2
Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141. https://doi.org/10.3389/fenrg.2018.00141
Batista Meneses, D., Montes de Oca-Vásquez, G., Vega-Baudrit, J. R., Rojas-Álvarez, M., Corrales-Castillo, J., & Murillo-Araya, L. C. (2020). Pretreatment methods of lignocellulosic wastes into value-added products: Recent advances and possibilities. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00722-0
Bernstad, A., & la Cour Jansen, J. (2012). Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective. Waste Management, 32(5), 806–815. https://doi.org/10.1016/j.wasman.2012.01.008
Bhat, S. A., Singh, J., & Vig, A. P. (2017). Instrumental characterization of organic wastes for evaluation of vermicompost maturity. Journal of Analytical Science and Technology, 8(1), 2. https://doi.org/10.1186/s40543-017-0112-2
Boulter, J. I., Boland, G. J., & Trevors, J. T. (2000). Compost: A study of the development process and end-product potential for suppression of turfgrass disease. World Journal of Microbiology and Biotechnology, 16(2), 115–134. https://doi.org/10.1023/A:1008901420646
Cao, W., Vaddella, V., Biswas, S., Perkins, K., Clay, C., Wu, T., Zheng, Y., Ndegwa, P., & Pandey, P. (2016). Assessing the changes in E. coli levels and nutrient dynamics during vermicomposting of food waste under lab and field scale conditions. Environmental Science and Pollution Research, 23(22), 23195–23202. https://doi.org/10.1007/s11356-016-7528-x
Chan, Y. C., Sinha, R. K., & Wang, W. (2011). Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 29(5), 540–548. https://doi.org/10.1177/0734242X10375587
Chauhan, N., Singh, M. P., Singh, A., Singh, A. K., Chauhan, S. S., & Singh, S. B. (2008). Effect of biocompost application on sugarcane crop. Sugar Tech, 10(2), 174–176. https://doi.org/10.1007/s12355-008-0032-y
Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196–206. https://doi.org/10.1016/j.fuproc.2016.12.007
Dastpak, H., Pasalari, H., Jafari, A. J., Gholami, M., & Farzadkia, M. (2020). Improvement of Co-Composting by a combined pretreatment Ozonation/Ultrasonic process in stabilization of raw activated sludge. Scientific Reports, 10(1), 1070. https://doi.org/10.1038/s41598-020-58054-y
Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2017). Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 42(42), 26522–26528. https://doi.org/10.1016/j.ijhydene.2017.06.178
Delgenes, J. P., Penaud, V., & Moletta, R. (2003). Pretreatments for the enhancement of anaerobic digestion of solid wastes. ChemInform, 34(13). https://doi.org/10.1002/chin.200313271
Duque, A., Manzanares, P., & Ballesteros, M. (2017). Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renewable Energy, 114(Part B), 1427–1441. https://doi.org/10.1016/j.renene.2017.06.050
Ellery, D. J., & Kai, T. C. (2010). Vermicomposting projects in Hong Kong. In C. A. Edwards, N. Q. Arancon, & R. L. Sherman (Eds.), Vermiculture technology: Earthworms, organic wastes, and environmental management (pp. 497–529). CRC Press. https://doi.org/10.1201/b10453
Gandhi, P., Paritosh, K., Pareek, N., Mathur, S., Lizasoain, J., Gronauer, A., Bauer, A., & Vivekanand, V. (2018). Multicriteria decision model and thermal pretreatment of hotel food waste for robust output to biogas: Case study from city of Jaipur, India. BioMed Research International, 2018, 9416249. https://doi.org/10.1155/2018/9416249
Gao, A., Tian, Z., Wang, Z., Wennersten, R., & Sun, Q. (2017). Comparison between the technologies for food waste treatment. Energy Procedia, 105, 3915–3921. https://doi.org/10.1016/j.egypro.2017.03.811
Garg, V. K., Suthar, S., & Yadav, A. (2012). Management of food industry waste employing vermicomposting technology. Bioresource Technology, 126, 437–443. https://doi.org/10.1016/j.biortech.2011.11.116
Gemede, H. F. (2015). Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. Journal of Food Processing and Technology, 6(6), 1000458. https://doi.org/10.4172/2157-7110.1000458
Gurav, M. V, & Pathade, G. R. (2011). Production of vermicompost from temple waste (Nirmalya): A case study. Universal Journal of Environmental Research and Technology, 1(2), 182–192.
Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Montes Molina, J. A., Nafate, C. C., Abud-Archila, M., Oliva Llaven, M. A., Rincón-Rosales, R., & Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98(15), 2781–2786. https://doi.org/10.1016/j.biortech.2006.02.032
Hao, H. T. N., Karthikeyan, O. P., & Heimann, K. (2015). Bio-refining of carbohydrate-rich food waste for biofuels. Energies, 8(7), 6350–6364. https://doi.org/10.3390/en8076350
Iqbal, M. K., Khan, R. A., Nadeem, A., & Hussnain, A. (2012). Comparative study of different techniques of composting and their stability evaluation in municipal solid waste. Journal of the Chemical Society of Pakistan, 34(2), 273–282.
Jain, S., Newman, D., Cepeda-Márquez, R., & Zeller, K. (2018). Global food waste management: An implementation guide for cities. https://www.worldbiogasassociation.org/wp-content/uploads/2018/05/Global-Food-Waste-Management-Full-report-pdf.pdf
Kamaruzzaman, F., Zain, S. M., Saad, N. F. M., Basri, H., & Basri, N. E. A. (2018). Effective use of indigenous microorganism (IMO) in composting a mixture of food and yard wastes on an industrial scale. Jurnal Kejuruteraan, 1(5), 53–58.
Krishna, D., & Kalamdhad, A. S. (2014). Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review. Journal of Environmental Chemical Engineering, 2(3), 1821–1830. https://doi.org/10.1016/j.jece.2014.07.024
Kuang, B., Mahmood, H. S., Quraishi, M. Z., Hoogmoed, W. B., Mouazen, A. M., & van Henten, E. J. (2012). Sensing soil properties in the laboratory, in situ, and on-line. A review. In Advances in agronomy (1st ed., Vol. 114, pp. 155-223). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394275-3.00003-1
Kullavanijaya, P., & Chavalparit, O. (2020). The effect of ensiling and alkaline pretreatment on anaerobic acidification of Napier grass in the leached bed process. Environmental Engineering Research, 25(5), 668–676. https://doi.org/10.4491/eer.2019.231
Kumar, A., Prakash, C. H. B., Brar, N. S., & Kumar, B. (2018). Potential of vermicompost for sustainable crop production and soil health improvement in different cropping systems. International Journal of Current Microbiology and Applied Sciences, 7(10), 1042–1055. https://doi.org/10.20546/ijcmas.2018.710.116
Kumar, S. S. (2013). Eco-friendly practice of utilization of food wastes. International Journal of Pharmaceutical Science Invention, 2(1), 14-17.
Lee, W., Park, S., Cui, F., & Kim, M. (2019). Optimizing pre-treatment conditions for anaerobic co-digestion of food waste and sewage sludge. Journal of Environmental Management, 249, 109397. https://doi.org/10.1016/j.jenvman.2019.109397
Lim, W. J., Chin, N. L., Yusof, A. Y., Yahya, A., & Tee, T. P. (2016). Food waste handling in Malaysia and comparison with other Asian countries. International Food Research Journal, 23(Suppl), S1–S6.
Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977. https://doi.org/10.1016/j.biortech.2005.01.011
Moyin-Jesu, E. I. (2007). Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L.). Bioresource Technology, 98(11), 2057–2064. https://doi.org/10.1016/j.biortech.2006.03.007
Muhammad Firdaus, A. R., Abu Samah, M. A., & Abd Hamid, K. B. (2018). CHNS analysis towards food waste in composting. Journal CleanWAS, 2(1), 6–10. https://doi.org/10.26480/jcleanwas.01.2018.06.10
Munroe, G., Scott, J., Burlington, C., Scotia, N., Holsteins, K., & Pre, G. (2007). Manual of on-farm vermicomposting and vermiculture. https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/E-Learning/Moocs/Solid_Waste/W4/Manual_On_Farm_Vermicomposting_Vermiculture.pdf
Muqtadir, M., Islam, M., Haque, T., & Nahar, A. (2019). Growth and yield of okra influenced by different types of fertilizers and netting. Progressive Agriculture, 30, 1–9. https://doi.org/10.3329/pa.v30i0.41550
Nagavallemma, K., Wani, S., Stephane, L., Padmaja, V., Vineela, C., & Babu, R. M. (2006). Vermicomposting : Recycling wastes into valuable organic fertilizer. https://www.researchgate.net/publication/26513646_Vermicomposting_recycling_wastes_into_valuable_organic_fertilizer
Nzioka, A. M., Hwang, H. U., Kim, M. G., Troshin, A. G., Caozheng, Y., & Kim, Y. J. (2016). Experimental investigation of drying process for mixed municipal solid waste: Case study of wastes generated in Nairobi, Kenya. International Journal of Advances in Agricultural and Environmental Engineering, 3(1), 87–91. https://doi.org/10.15242/ijaaee.er01160039
Othman, N., Irwan, J. M., & Roslan, M. A. (2012). Vermicomposting of food waste. International Journal of Integrated Engineering, 4(2), 39–48.
Ozores-Hampton, M., Bewick, T. A., Stoffella, P., Cantliffe, D. J., & Obreza, T. A. (2019). Municipal solid waste (MSW) compost maturity influence on weed seed germination. HortScience, 31(4), 577e-577. https://doi.org/10.21273/hortsci.31.4.577e
Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Research International, 2017, 2370927. https://doi.org/10.1155/2017/2370927
Pierre, D., Kodandoor, S. C., & Naik, P. (2020). Vermicomposting of food waste using exotic species of earthworms “Eudriluseugeniae” at Mangalagangonthri. Rwanda Journal of Engineering, Science, Technology and Environment, 3(1). https://doi.org/10.4314/rjeste.v3i1.8
Ragazzi, M., Rada, E. C., Panaitescu, V., & Aposto, T. (2007). Municipal solid waste pre-treatment: A comparison between two dewatering options. WIT Transactions on Ecology and the Environment, 102, 943–949. https://doi.org/10.2495/SDP070902
Sajid, M., Khan, M. A., Rab, A., Shah, S. N. M., Arif, M., Jan, I., Hussain, Z., & Mukhtiar, M. (2012). Impact of nitrogen and phosphorus on seed yield and yield components of okra cultivars. Journal of Animal and Plant Sciences, 22(3), 704–707.
Salihu, A., & Alam, M. Z. (2016). Pretreatment methods of organic wastes for biogas production. Journal of Applied Sciences, 16(3), 124–137. https://doi.org/10.3923/jas.2016.124.137
Sasaki, N., Suehara, K. I., Kohda, J., Nakano, Y., & Yano, T. (2003). Effects of C/N ratio and pH of raw materials on oil degradation efficiency in a compost fermentation process. Journal of Bioscience and Bioengineering, 96(1), 47–52. https://doi.org/10.1263/jbb.96.47
Seidl, P. R., & Goulart, A. K. (2016). Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry, 2, 48–53. https://doi.org/10.1016/j.cogsc.2016.09.003
Shen, D. S., Yang, Y. Q., Huang, H. L., Hu, L. F., & Long, Y. Y. (2015). Water state changes during the composting of kitchen waste. Waste Management, 38(1), 381–387. https://doi.org/10.1016/j.wasman.2015.01.011
Slorach, P. C., Jeswani, H. K., Cuéllar-Franca, R., & Azapagic, A. (2019). Environmental sustainability of anaerobic digestion of household food waste. Journal of Environmental Management, 236, 798–814. https://doi.org/10.1016/j.jenvman.2019.02.001
Song, C., Li, M., Qi, H., Zhang, Y., Liu, D., Xia, X., Pan, H., & Xi, B. (2018). Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting. Bioresource Technology, 259, 1–9. https://doi.org/10.1016/j.biortech.2018.03.022
Srivastava, V., Gupta, S. K., Singh, P., Sharma, B., & Singh, R. P. (2018). Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. International Journal of Recycling of Organic Waste in Agriculture, 7(3), 241–250. https://doi.org/10.1007/s40093-018-0210-1
Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases - Production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832–844.
Sun, W., Huang, G. H., Zeng, G., Qin, X., & Sun, X. (2009). A stepwise-cluster microbial biomass inference model in food waste composting. Waste Management, 29(12), 2956–2968. https://doi.org/10.1016/j.wasman.2009.06.023
Sundberg, C. (2005). Improving compost process efficiency by controlling aeration, temperature and pH [Doctoral’s thesis, Swedish University of Agricultural Sciences]. SLU Publication Database. https://pub.epsilon.slu.se/950/
Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M., & Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33(1), 204–211. https://doi.org/10.1016/j.wasman.2012.09.017
Tun, M. M., & Juchelková, D. (2019). Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environmental Engineering Research, 24(4), 529–542. https://doi.org/10.4491/eer.2018.327
Vanneste, J., Ennaert, T., Vanhulsel, A., & Sels, B. (2017). Unconventional pretreatment of lignocellulose with low-temperature plasma. ChemSusChem, 10(1), 14–31. https://doi.org/10.1002/cssc.201601381
Vinoth Kumar, K., & Kasturi Bai, R. (2008). Solar greenhouse assisted biogas plant in hilly region - A field study. Solar Energy, 82(10), 911–917. https://doi.org/10.1016/j.solener.2008.03.005
Wapa, J. M., Kwari, J. D., & Ibrahim, S. A. (2014). Effects of Biochar, Mokusakueki and Bokashi application on soil nutrients, yields and qualities of sweet potato. Journal of Agriculture and Environmental Sciences, 3(2), 299–314.
Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I., & Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426–438. https://doi.org/10.1016/j.jclepro.2017.12.165
Weber, J., Kocowicz, A., Bekier, J., Jamroz, E., Tyszka, R., Debicka, M., Parylak, D., & Kordas, L. (2014). The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. European Journal of Agronomy, 54, 54–60. https://doi.org/10.1016/j.eja.2013.11.014
Wong, J. W. C., Fung, S. O., & Selvam, A. (2009). Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting. Bioresource Technology, 100(13), 3324–3331. https://doi.org/10.1016/j.biortech.2009.01.063
Xu, N., Liu, S., Xin, F., Zhou, J., Jia, H., Xu, J., Jiang, M., & Dong, W. (2019). Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Frontiers in Bioengineering and Biotechnology, 7, 191. https://doi.org/10.3389/fbioe.2019.00191
Yin, Y., Liu, Y. J., Meng, S. J., Kiran, E. U., & Liu, Y. (2016). Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Applied Energy, 179, 1131–1137. https://doi.org/10.1016/j.apenergy.2016.07.083
Yu, H., & Huang, G. H. (2009). Effects of sodium acetate as a pH control amendment on the composting of food waste. Bioresource Technology, 100(6), 2005–2011. https://doi.org/10.1016/j.biortech.2008.10.007
Zhang, H. J., & Matsuto, T. (2010). Mass and element balance in food waste composting facilities. Waste Management, 30(8–9), 1477–1485. https://doi.org/10.1016/j.wasman.2010.02.029
Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35–53. https://doi.org/10.1016/j.pecs.2014.01.001
ISSN 0128-7680
e-ISSN 2231-8526