Home / Regular Issue / JST Vol. 45 (4) Nov. 2022 / JTAS-2520-2022

 

The Potential of Liquid Waste from the Fruit Preserves Production Process as a Low-cost Raw Material for the Production of Bacterial Cellulose

Pakjirat Singhaboot, Atjimaporn Phanomarpornchai, Chairampha Phuangsiri, Kawisara Boonthongtho and Patarapong Kroeksakul

Pertanika Journal of Science & Technology, Volume 45, Issue 4, November 2022

DOI: https://doi.org/10.47836/pjtas.45.4.16

Keywords: Bacterial cellulose, fruit preserve process, liquid waste, low-cost carbon source, mango, tamarind

Published on: 4 November 2022

The liquid waste from the production of fruit preserves was used as an alternative carbon source to replace sugar in the traditional Hestrin-Schramm (HS) and coconut water media (CM) and reduce the cost of bacterial cellulose (BC) production. The sugar components of liquid wastes from preserved tamarind (LWT) and preserved mango (LWM) were characterized, and the total sugars were between 237.50 g/L and 231.90 g/L. The effects of the nutrients in the media with LWT and LWM on the production of BC by Acetobacter xylinum were determined. The result showed that A. xylinum could grow and produce BC in the media with liquid waste. The highest concentration of BC, 6.60±0.04 g/L, was obtained from the medium containing 25% (v/v) LWM. In a medium containing LWT, A. xylinum produced a maximum BC of 5.50±0.30 g/L when 12.5% (v/v) LWM was added. However, when the structure and physical properties of the BC from the liquid waste were characterized, it was similar to BC from the HS medium and CM medium without liquid waste.

  • Akintunde, M. O., Adebayo-Tayo, B. C., Ishola, M. M., Zamani, A., & Horváth, I. S. (2022). Bacterial cellulose production from agricultural residues by two Komagataeibacter sp. strains. Bioengineered, 13(4), 10010–10025. https://doi.org/10.1080/21655979.2022.2062970

  • Amit, S. K., Uddin, M. M., Rahman, R., Islam, R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture and Food Security, 6, 51. https://doi.org/10.1186/s40066-017-0130-8

  • Aswini, K., Gopal, N. O., & Uthandi, S. (2020). Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology, 20, 46. https://doi.org/10.1186/s12896-020-00639-6

  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 7. https://doi.org/10.3389/fsufs.2019.00007

  • Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., Dima, A., Terpou, A., Koutinas, A., & Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172–180. https://doi.org/10.1016/j.biortech.2016.02.071

  • Çakar, F., Özer, I., Aytekin, A. O., & Şahin, F. (2014). Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7-13. https://doi.org/10.1016/j.carbpol.2014.01.103

  • Carrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229–2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003

  • Chen, G., Wu, G., Chen, L., Wang, W., Hong, F. F., & Jönsson, L. J. (2019). Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology, 12(4), 677–687. https://doi.org/10.1111/1751-7915.13401

  • Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8, 2027. https://doi.org/10.3389/fmicb.2017.02027

  • Dikshit, P. K., & Kim, B. S. (2020). Bacterial cellulose production from biodiesel–derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules, 153, 902-911. https://doi.org/10.1016/j.ijbiomac.2020.03.047

  • Esa, F., Masrinda, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113–119. https://doi.org/10.1016/j.aaspro.2014.11.017

  • Gea, S., Reynold, C. T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., & Peijs, T. (2011). Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresource Technology, 102(19), 9105-9110. https://doi.org/10.1016/j.biortech.2011.04.077

  • Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352. https://doi.org/10.1042/bj0580345

  • Kacuráková, M., Smith, A. C., Gidley, M. J., & Wilson, R. H. (2002). Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydrate Research, 337(12), 1145–1153. https://doi.org/10.1016/s0008-6215(02)00102-7

  • Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose - Artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561–1603. https://doi.org/10.1016/S0079-6700(01)00021-1

  • Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148, 245. https://doi.org/10.1007/s12010-007-8119-6

  • Kouda, T., Naritomi, T., Yano, H., & Yoshinaga, F. (1998). Inhibitory effect of carbon dioxide on bacterial cellulose production by Acetobacter in agitated culture. Journal of Fermentation and Bioengineering, 85(3), 318-381. https://doi.org/10.1016/S0922-338X(97)85682-6

  • Moharram, M. A., & Mahmoud, O. M. (2007). FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. Journal of Applied Polymer Science, 107(1), 30-36. https://doi.org/10.1002/app.26748

  • Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134-179. https://doi.org/10.1080/05704920701829043

  • Nguyen, Q.-D., Nguyen, T.-V.-L., Nguyen, T.-T.-D., & Nguyen, N.-N. (2022). Effects of different hydrocolloids on the production of bacterial cellulose by Acetobacter xylinum using Hestrin–Schramm medium under anaerobic condition. Bioresource Technology Reports, 17, 100878. https://doi.org/10.1016/j.biteb.2021.100878

  • Olszewska-Widdrat, A., Alexandri, M., López-Gómez, J. P., Schneider, R., & Venus, J. (2020). Batch and continuous lactic acid fermentation based on a multi-substrate approach. Microorganisms, 8(7), 1084. https://doi.org/10.3390/microorganisms8071084

  • Rahman, M. M., Netravali, A. N. (2016). Aligned bacterial cellulose arrays as “Green” nanofibers for composite materials. ACS Macro Letters, 5(9), 1070–1074. https://doi.org/10.1021/acsmacrolett.6b00621

  • Rebelo, A., Archer, A. J., Chen, X., Liu, C., Yang, G., & Liu, Y. (2018). Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Science and Technology of Advanced Materials, 19(1), 203–211. https://doi.org/10.1080/14686996.2018.1430981

  • Ruka, D. R., Simon, G. P., & Dean, K. M. (2014). Bacterial cellulose and its use in renewable composites. In V. K. Thakur (Ed.), Nanocellulose polymer nanocomposites: Fundamentals and applications (pp. 89-130). Scrivener Publishing. https://doi.org/10.1002/9781118872246.ch4

  • Schrecker, S. T., & Gostomski, P. A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnology Letters, 27, 1435-1438. https://doi.org/10.1007/s10529-005-1465-y

  • Thongwai, N., Futui, W., Ladpala, N., Sirichai, B., Weechan, A., Kanklai, J., & Rungsirivanich, P. (2022). Characterization of bacterial cellulose produced by Komagataeibacter maltaceti P285 isolated from contaminated honey wine. Microorganisms, 10(3), 528. https://doi.org/10.3390/microorganisms10030528

  • Väljamäe, P., Pettersson, G., & Johansson, G. (2001). Mechanism of substrate inhibition in cellulose synergistic degradation. European Journal of Biochemistry, 268(16), 4520–4526. https://doi.org/10.1046/j.1432-1327.2001.02377.x

  • Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M., & Wild, C. (2020). Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ, 8, e9182. https://doi.org/10.7717/peerj.9182

  • Wong, S. S., Kasapis, S., & Tan, Y. M. (2009). Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydrate Polymer, 77(2), 280–287. https://doi.org/10.1016/j.carbpol.2008.12.038

  • Zahan, K. A., Hadzir, M. S. A., & Mustapha, M. (2017). The potential use of papaya juice as fermentation medium for bacteria cellulose production by Acetobacter xylinum 0416. Pertanika Journal of Tropical Agricultural Science, 40(3), 343-350.

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JTAS-2520-2022

Download Full Article PDF

Share this article

Related Articles