Home / Regular Issue / JST Vol. 46 (2) May. 2023 / JTAS-2602-2022


Revisiting In vitro Micropropagation Protocols of Mimosa pudica for Enhanced Seed Germination, Shoot Multiplication, and Root Initiation

Nor Saffana Baharuddin, Muhamad Aidilfitri Mohamad Roslan, Noor Amani Ramli, Azzreena Mohamad Azzeme, Zuraida Ab Rahman, Mohd Ezuan Khayat, Helmi Wasoh and Zulfazli M. Sobri

Pertanika Journal of Science & Technology, Volume 46, Issue 2, May 2023

DOI: https://doi.org/10.47836/pjtas.46.2.12

Keywords: Medicinal weed, micropropagation, Mimosa pudica

Published on: 16 May 2023

Mimosa pudica is a medicinal plant worthy of therapeutic properties. It is often overlooked as one of the weed species, and the potential was underappreciated despite its abundance in nature, particularly in tropical climate countries. Considering the aptitude of this species, the micropropagation protocol of M. pudica was revisited and enhanced. The seed surface sterilization and germination were assessed, followed by shoot multiplication rate and root initiation efficiency. Seeds of M. pudica were best surface sterilized with 35% of Clorox and recorded the highest germination rate at 65.55% in media of three-quarter strength Murashige and Skoog (MS) combined with 30 g of sucrose. The explants were harvested and subcultured into multiplication media fortified with 6-benzylaminopurine, kinetin, and coconut water. The highest number of new shoots and leaves were obtained at 3 shoots and 3.27 cm in media of MS combined with 17.6 μm kinetin. Half-strength MS media devoid of hormone was recommended for root induction, resulting in the 5 healthy roots at 2.06 cm after 4 weeks of culture. Overall, the developed micropropagation protocol of M. pudica could facilitate its large-scale cultivation, indicating its potential as a medicinal crop for the extraction of bioactive compounds.

  • Ahmadi, E., Nasr, S. M. H., Jalilvand, H., & Savadkoohi, S. K. (2012). Contamination control of microbe Ziziphus spina [christti] seed in vitro culture. Trees, 26, 1299-1304. https://doi.org/10.1007/s00468-012-0705-8

  • Anand, S. (2010). Various approaches for secondary metabolite production through plant tissue culture. Pharmacia, 1(1), 1–7.

  • Baharuddin, N. S., Roslan, M. A. M., Bawzer, M. A. M., Mohamad Azzeme, A., Rahman, Z. A., Khayat, M. E., Rahman, N. A. A., & Sobri, Z. M. (2021). Response surface optimization of extraction conditions and in vitro antioxidant and antidiabetic evaluation of an under-valued medicinal weed, Mimosa pudica. Plants, 10(8), 1692. https://doi.org/10.3390/plants10081692

  • Baskaran, P., Moyo, N., & Staden, J. V. (2014). In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. South African Journal of Botany, 90, 74–79. https://doi.org/10.1016/j.sajb.2013.10.005

  • Belniaki, A. C., Rabel, L. A. D. N., Gomes, E. N., & Zuffellato-Ribas, K. C. (2018). Does the presence of leaves on coleus stem cuttings influence their rooting? Ornamental Horticulture, 24(3), 206–210. https://doi.org/10.14295/oh.v24i3.1204

  • Bianchetti, R. E., de Resende, C., F., Pacheco, V. S., Dornellas, F. F., de Oliveira, A. M. S., Freitas, J. C. E., & Peixoto, P. H. P. (2017). An improved protocol for in vitro propagation of the medicinal plant Mimosa pudica L. African Journal of Biotechnology, 16(9), 418–428. https://doi.org/10.5897/AJB2016.15831

  • Buah, J. N., & Agu-Asare, P. (2014). Coconut water from fresh and dry fruits as an alternative to BAP in the in vitro culture of dwarf cavendish banana. Journal of Biological Science, 14(8), 521-526. https://doi.org/10.3923/jbs.2014.521.526

  • Calderon-Villalobos, L. I., Tan, X., Zheng, N., & Estelle, M. (2010). Auxin perception - Structural insights. Cold Spring Harbor Perspectives in Biology, 2(7), a005546. https://doi.org/10.1101/cshperspect.a005546

  • Dahab, A., Habib, A. M. A., Hosni, Y. A., & Gabr, A. M. M. (2005). Effect of MS-salt strength, sucrose and IBA concentration and acclimatization media on Ruscus hypoglossum L. micropropagation. Arab Journal of Biotechnology, 8(1), 141–154.

  • Das, A., Kumar, S., Nandeesha, P., Yadav, I. S., Saini, J., Chaturvedi, S. K., & Datta, S. (2014). An efficient in vitro regeneration system of fieldpea (Pisum sativum L.) via shoot organogenesis. Journal of Plant Biochemistry and Biotechnology, 23, 184–189. https://doi.org/10.1007/s13562-013-0200-3

  • Davoudpour, Y., Schmidt, M., Calabrese, F., Richnow, H. H., & Musat, N. (2020). High resolution microscopy to evaluate the efficiency of surface sterilization of Zea mays seeds. PLOS One, 15(11), e0242247. https://doi.org/10.1371/journal.pone.0242247

  • de Souza, R. A. V., Braga, F. T., Setotaw, T. A., Neto, J. V., de Azevedo, P. H., de Azevedo, V. H., & de Almeida Cançado, G. M. (2013). Effect of coconut water on growth of olive embryos cultured in vitro. Ciência Rural, 43(2), 290–296. https://doi.org/10.1590/S0103-84782013000200016

  • Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, C. F. R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82, 9-22. https://doi.org/10.1016/j.indcrop.2015.12.016

  • Fehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Frontiers in Plant Science, 10, 536. https://doi.org/10.3389/fpls.2019.00536

  • Felek, W., Mekibib, F., & Admassu, B. (2015). Optimization of explants surface sterilization condition for field grown peach (Prunus persica L. Batsch. Cv. Garnem) intended for in vitro culture. African Journal of Biotechnology, 14(8), 657–660. https://doi.org/10.5897/ajb2014.14266

  • Gallavotti, A. (2013). The role of auxin in shaping shoot architecture. Journal of Experimental Botany, 64(9), 2593–2608. https://doi.org/10.1093/jxb/ert141

  • Ge, L., Yong, J. W. H., Goh, N. K., Chia, L. S., Tan, S. N., & Ong, E. S. (2005). Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography-tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. Journal of Chromatography, 829(1-2), 26–34. https://doi.org/10.1016/j.jchromb.2005.09.026

  • Gibson, S. I. (2000). Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiology, 124(4), 1532–1539. https://doi.org/10.1104/pp.124.4.1532

  • Grossmann, K. (2009). Auxin herbicides: Current status of mechanism and mode of action. Pest Management Science, 66(2), 113-120. https://doi.org/10.1002/ps.1860

  • Gupta, A. (2016). Asymbiotic seed germination in orchids: Role of organic additives. International Advanced Research Journal in Science, Engineering and Technology, 3(5), 143–147. https://doi.org/10.17148/IARJSET.2016.3530

  • Haida, Z., Nakasha, J. J., & Hakiman, M. (2020). In vitro responses of plant growth factors on growth, yield, phenolics content and antioxidant activities of Clinacanthus nutans (Sabah snake grass). Plants, 9(8), 1030. https://doi.org/10.3390/plants9081030

  • Hassan, A. K. M. S., Sultana, R., Jahan, M. A. A., & Khatun, R. (2010). In vitro mass propagation of Mimosa pudica L., using shoot tip and nodal explants. Bangladesh Journal of Scientific and Industrial Research, 45(2), 95–100. https://doi.org/10.3329/bjsir.v45i2.5704

  • Hazarika, B. N. (2003). Acclimatization of tissue-cultured plants. Current Science, 85(12), 1704–1712. https://doi.org/10.17660/ActaHortic.1992.314.13

  • Ilczuk, A., & Jacygrad, E. (2016). In vitro propagation and assessment of genetic stability of acclimated plantlets of Cornus alba L. using RAPD and ISSR markers. In Vitro Cellular and Developmental Biology - Plant, 52, 379–390. https://doi.org/10.1007/s11627-016-9781-6

  • Janarthanam, B., Gayathri, B., & Sumathi, E. (2011). A rapid, high frequency regeneration of Justicia gendarussa Burm.f. Bangladesh Journal of Scientific and Industrial Research, 46(2), 201–204. https://doi.org/10.3329/bjsir.v46i2.4388

  • Jiang, K., & Asami, T. (2018). Chemical regulators of plant hormones and their applications in basic research and agriculture. Bioscience, Biotechnology, and Biochemistry, 82(8), 1265-1300. https://doi.org/10.1080/09168451.2018.1462693

  • Jing, G. F. (2016). Effects of selected additives for growth efficiency on in vitro grown Vanilla planifolia Andrews [Master’s thesis, Universiti Sains Malaysia]. Repository@USM. http://eprints.usm.my/31559/1/GOH_FOONG_JING_24.pdf

  • Johnson, T. R., Kane, M. E., & Pérez, H. E. (2011). Examining the interaction of light, nutrients and carbohydrates on seed germination and early seedling development of Bletia purpurea (Orchidaceae). Plant Growth Regulator, 63, 89–99. https://doi.org/10.1007/s10725-010-9516-3

  • Kaur, S., & Bhutani, K. K. (2016). Asymbiotic seed germination and multiplication of an endangered orchid – Paphiopedilum venustum (Wall. ex Sims.). Acta Societatis Botanicorum Poloniae, 85(2), 3494. https://doi.org/10.5586/asbp.3494

  • Keshishian, E. A., & Rashotte, A. M. (2015). Plant cytokinin signalling. Essays in Biochemistry, 58, 13–27. https://doi.org/10.1042/bse0580013

  • Koné, M., Koné, T., Silué, N., Soumahoro, A. B., & Kouakou, T. H. (2015). In vitro seeds germination and seedling growth of bambara groundnut (Vigna subterranea (L.) Verdc. (Fabaceae)). The Scientific World Journal, 2015, 595073. https://doi.org/10.1155/2015/595073

  • Li, H., & Zhang, D. (2018). In vitro seed germination of Kalmia latifolia L. hybrids: A means for improving germination and speeding up breeding cycle. American Society for Horticultural Science, 53(4), 535–540. https://doi.org/10.21273/HORTSCI12829-17

  • Liu, T.-H. A., Lin, J.-J., & Wu, R.-Y. (2006). The effects of using trehalose as a carbon source on the proliferation of Phalaenopsis and Doritaenopsis protocorm-like-bodies. Plant Cell, Tissue and Organ Culture, 86, 125–129. https://doi.org/10.1007/s11240-006-9092-4

  • Malik, N. S. A., Perez, J. L., & Kunta, M. (2012). The effect of leaf presence on the rooting of stem cutting of bitter melon and on changes in polyamine levels. Agricultural Sciences, 3(7), 936–940. https://doi.org/10.4236/as.2012.37114

  • Mukhtar, S., Anis, M., & Ahmad, N. (2010). In vitro optimization of phytohormones on micropropagation in butterfly pea (Clitoria ternatea L.). Journal of Herbs, Spices and Medicinal Plants, 16(2), 98–105. https://doi.org/10.1080/10496475.2010.499310

  • Munro, I. C., Carlo, G. L., Orr, J. C., Sund, K. G., Wilson, R. M., Kennepohl, E., Lynch, B. S., & Jablinske, M. (1992). A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. Journal of the American College of Toxicology, 11(5), 559–664. https://doi.org/10.3109/10915819209141893

  • Oyebanji, O. B., Nweke, O., Odebunmi, O., Galadima, N. B., Idris, M. S., Nnodi, U. N., Afolabi, A. S., & Ogbadu, G. H. (2009). Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology, 8(20), 5395–5399. https://doi.org/10.5897/AJB09.923

  • Paul, S., Kumaria, S., & Tandon, P. (2012). An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. Annals of Botany PLANTS, 2012, plr032. https://doi.org/10.1093/aobpla/plr032

  • Petrásek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertová, D., Wiśniewska, J., Tadele, Z., Kubeš, M., Covanová, M., Dhonukshe, P., Skůpa, P., Benková, E., Perry, L., Křeček, P., Lee, O. R., Fink, G. R., Geisler, M., Murphy, A. S., … Friml, J. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312(5775), 914–918. https://doi.org/10.1126/science.1123542

  • Pimenta, M. R., Fernandes, L. S., Pereira, U. J., Garcia, L. S., Leal, S. R., Leitão, S. G., Salimena, F. R. G., Viccini, L. F., & Peixoto, P. H. P. (2007). Flowering, germination and rooting of cuttings of Lippia L. (Verbenaceae). Revista Brasileira de Botânica, 30(2), 211–220. https://doi.org/10.1590/S0100-84042007000200006

  • Prando, M. A. S., Chiavazza, P., Faggio, A., & Contessa, C. (2014). Effect of coconut water and growth regulator supplements on in vitro propagation of Corylus avellana L. Scientia Horticulturae, 171, 91–94. https://doi.org/10.1016/j.scienta.2014.03.052

  • Ramesh, S., Chandran, C., & Venkatesan, G. (2013). In vitro clonal propagation of vulnerable medicinal plant, Mimosa pudica L. International Journal of Current Research and Development, 2(1), 18–30.

  • Rejthar, J., Viehmannova, I., Cepkova, P., Fernández, E., & Milella, L. (2014). In vitro propagation of Drosera intermedia as influenced by cytokinins, pH, sucrose and nutrient concentration. Emirates Journal of Food and Agriculture, 26(6), 558–564. https://doi.org/10.9755/ejfa.v26i6.18022

  • Reuveni, O., & Raviv, M. (1980). Importance of leaf retention to rooting of avocado cuttings. Journal of the American Society for Horticultural Science, 106(2), 127–130. https://doi.org/10.21273/JASHS.106.2.127

  • Rizwan, H. M., Irshad, M., He, B. Z., Debnath, B., Mitra, S., Li, M., Lu, X. C., Sun, Y. T., & Qiu, D. L. (2018). Silver nitrate (AgNO3) boosted high-frequency multiple shoot regeneration from cotyledonary node explants of okra (Abelmoschus esculentus L.). Applied Ecology and Environmental Research, 16(3), 3421–3435. https://doi.org/10.15666/aeer/1603

  • Russowski, D., Maurmann, N., Rech, S. B., & Fett-Neto, A. G. (2006). Role of light and medium composition on growth and valepotriate contents in Valeriana glechomifolia whole plant liquid cultures. Plant Cell, Tissue and Organ Culture, 86, 211–218. https://doi.org/10.1007/s11240-006-9109-z

  • Sánchez-Zamora, M. Á., Cos-Terrer, J., Frutos-Tomás, D., & García-López, R. (2006). Embryo germination and proliferation in vitro of Juglans regia L. Scientia Horticulturae, 108(3), 317–321. https://doi.org/10.1016/j.scienta.2006.01.041

  • Schepetilnikov, M., & Ryabova, L. A. (2017). Auxin signaling in regulation of plant translation reinitiation. Frontiers in Plant Science, 8, 1014. https://doi.org/10.3389/fpls.2017.01014

  • Simon, S., & Petrášek, J. (2011). Why plants need more than one type of auxin. Plant Science, 180(3), 454–460.https://doi.org/10.1016/j.plantsci.2010.12.007

  • Song, Y. (2013). Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of Integrative Plant Biology, 56(2), 106–113. https://doi.org/10.1111/jipb.12131

  • Swarup, K., Benková, E., Swarup, R., Casimiro, I., Péret, B., Yang, Y., Parry, G., Nielsen, E., Smet, I. D., Vanneste, S., Levesque, M. P., Carrier, D., James, N., Calvo, V., Ljung, K., Kramer, E., Roberts, R., Graham, N., Marillonnet, S., … Bennett, M. J. (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 10, 946–954. https://doi.org/10.1038/ncb1754

  • Tiwari, S., Tiwari, R., & Singh, A. (2012). Impact of cypermethrin on fingerlings of common edible carp (Labeo rohita). The Scientific World Journal, 2012, 291395. https://doi.org/10.1100/2012/291395

  • Tofanelli, M. B. D., Freitas, P. L., & Pereira, G. E. (2014). 2,4-dichlorophenoxyacetic acid as an alternative auxin for rooting of vine rootstock cuttings. Revista Brasileira de Fruticultura, 36(3), 664–672. https://doi.org/10.1590/0100-2945-266/13

  • Utami, E. S. W., & Hariyanto, S. (2019). In vitro seed germination and seedling development of a rare Indonesian native orchid Phalaenopsis amboinensis J.J.Sm. Scientifica, 2019, 8105138. https://doi.org/10.1155/2019/8105138

  • Villa, F., Pasqual, M., & de Faria Freitas, G. (2010). Optimization of a protocol for the micropropagation of olive tree cv. Ascolano 315. Revista Ceres, 57(4), 530–534. https://doi.org/10.1590/S0034-737X2010000400015

  • Woldeyes, G. G., Senbeta, T. F., Adugna, A. Y., & Abegaz, A. W. (2021). The effect of MS strength, pH and sucrose concentrations on in vitro propagation of okra (Abelmoschus esculentus L.) from shoot tip explants. Research Square. https://doi.org/10.21203/rs.3.rs-153475/v1

  • Wotavová-Novotná, K., Vejsadová, H., & Kindlmann, P. (2007). Effects of sugars and growth regulators on in vitro growth of Dactylorhiza species. Biologia Plantarum, 51, 198–200. https://doi.org/10.1007/s10535-007-0040-x

  • Wu, K., Zeng, S., Lin, D., da Silva, J. A. T., Bu, Z., Zhang, J., & Duan, J. (2014). In vitro propagation and reintroduction of the endangered Renanthera imschootiana Rolfe. PLOS One, 9(10), e0110033. https://doi.org/10.1371/journal.pone.0110033

  • Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., & Hafiz, I. A. (2012). Review: Role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40, 2837-2849. https://doi.org/10.1007/s11033-012-2299-z

  • Younesikelaki, F. S., Ebrahimzadeh, M. H., Desfardi, M. K., Banala, M., Marka, R., & Nanna, R. S. (2016). Optimization of seed surface sterilization method and in vitro seed germination in Althaea officinalis (L.) - An important medicinal herb. Indian Journal of Science and Technology, 9(28), 1-6. https://doi.org/10.17485/ijst/2016/v9i28/90896

  • Zahara, M., Datta, A., & Boonkorkaew, P. (2016). Effects of sucrose, carrot juice and culture media on growth and net CO2 exchange rate in Phalaenopsis hybrid ‘Pink’. Scientia Horticulturae, 205, 17–24. https://doi.org/10.1016/j.scienta.2016.04.011

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Related Articles