PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 46 (3) Aug. 2023 / JTAS-2653-2022

 

Growth and Yield Comparison of Rice Plants Treated with Encapsulated Trichoderma asperellum (UPM 40) in Response to Drought Stress

Iffatul Arifah Yusup, Martini Mohammad Yusoff, Mohd Razi Ismail, Zulkarami Berahim and Fariz Adzmi

Pertanika Journal of Science & Technology, Volume 46, Issue 3, August 2023

DOI: https://doi.org/10.47836/pjtas.46.3.09

Keywords: Ceptometer, chlorophyll, photosynthesis, radiation, weight

Published on: 30 August 2023

During low rainfall periods, rice plants often face drought stress, which would significantly affect rice yield. One of the methods to mitigate the problem is incorporating rice plants with fungi such as Trichoderma. This study evaluated the effects of encapsulated Trichoderma asperellum (UPM 40) on the growth and yield of rice plants planted in saturated and flooded soil conditions in response to drought stress. A randomized complete block factorial design was implemented with four replications and two factors. The first factor was encapsulated T. asperellum (UPM 40) concentration of 0 and 5 g. The second factor was the soil condition: saturated and flooded soil. The drought stress was imposed by halting watering during early anthesis for 14 days and resumed afterward. One of the significant interaction effects detected was on the relative water content of rice plants planted in flooded soil conditions and treated with T. asperellum (UPM 40), where the value was 78.51%, higher than the control of 72.09%, which showed the ability of the fungus to help rice plants alleviate detrimental effects of drought stress and delay the onset of adverse effects of drought stress. Thus, it contributed to the crop’s simultaneous improvement in rice yield compared to untreated plants in saturated soil. Applying 5 g encapsulated T. asperellum (UPM 40) to the rice plants would perform best in flooded soil conditions during drought stress.

  • Adams, P., De-Leij, F. A. A. M., & Lynch, J. M. (2007). Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology, 54, 306-313. https://doi.org/10.1007/s00248-006-9203-0

  • Adzmi, F., Meon, S., Musa, M. H., & Yusuf, N. A. (2012). Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM 40 in alginate-montmorillonite clay. Journal of Microencapsulation, 29(3), 205-210. https://doi.org/10.3109/02652048.2012.659286

  • Arnon, D., I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1

  • Asseng, S., & van Herwaarden, A. F. (2003). Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil, 256, 217-219. https://doi.org/10.1023/A:1026231904221

  • Bae, H., Sicher, R. C., Kim, M. S., Kim S. H., Strem, M. D., Melnick, R. L., & Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60(11), 3279-3295. https://doi.org/10.1093/jxb/erp165

  • Bat-Oyun, T., Shinoda, M., & Tsubo, M. (2011). Effects of water and temperature stresses on radiation use efficiency in a semi-arid grassland. Journal of Plant Interactions, 7(3), 214-224. https://doi.org/10.1080/17429145.2011.564736

  • Bhushan, D., Pandey, A., Choudhary, M. K., Datta, A., Chakraborty, S., & Chakraborty, N. (2007). Comparative proteomic analysis of differential expressed proteins in chickpea extracellular matrix during dehydration stress. Molecular and Cellular Proteomics, 6(11), 1868-1884. https://doi.org/10.1074/mcp.M700015-MCP200

  • Chamswarng, C., & Kumchang, T. (2012). Efficacy of wettable pellet bioproduct of Trichoderma harzianum strain 01-52 for reducing dirty panicle disease on rice under field conditions. Thai Phytopathology, 26, 69-80.

  • Charoenrak, P., & Chamswarng, C. (2016). Efficacies of wettable pellet and fresh culture of Trichoderma asperellum biocontrol products in growth promoting and reducing dirty panicles of rice. Agriculture and Natural Resources, 50(4), 243-249. https://doi.org/10.1016/j.anres.2016.04.001

  • Chaves, M. M., Maroco, J. P., & Pareira, J. S. (2003). Understanding plant responses to drought – From genes to the whole plant. Functional Plant Biology, 30(3), 239-264. https://doi.org/10.1071/fp02076

  • Crosson, P. (1995). Natural resource and environmental consequences of rice production. In Fragile Lives in Fragile Ecosystems: Proceedings of the International Rice Research Conference (pp. 83-100). International Rice Research Institute.

  • Donald, C. M., & Hamblin, J. (1976). The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy, 28, 361-405. https://doi.org/10.1016/S0065-2113(08)60559-3

  • Doni, F., Isahak, A., Zain, C. R. C. M., & Yusoff, W. M. W. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, 4, 45. https://doi.org/10.1186/s13568-014-0045-8

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1051/agro:2008021

  • Gallagher, J. N., & Biscoe, P. V. (1978). Radiation absorption, growth and yield of cereals. The Journal of Agricultural Science, 91(1), 47-60. https://doi.org/10.1017/S0021859600056616

  • Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377-393. https://doi.org/10.1094/PDIS.2000.84.4.377

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797

  • HongBo, S., ZongSuo, L., & MingAn, S. (2005). Changes of anti-oxidative enzymes and MDA under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces, 45(1), 7-13. https://doi.org/10.1016/j.colsurfb.2005.06.016

  • Isendahl, N., & Schmidt, G. (2006). Drought in the Mediterranean: WWF policy proposals. World Wide Fund for Nature. https://www.wwf.or.jp/activities/lib/pdf/wwf_drought_med_report_2006.pdf

  • Jamieson, P. D., Martin, R. J., Francis, G. S., & Wilson, D. R. (1995). Drought stress on biomass production and radiation-use efficiency in barley. Field Crops Research, 43(2-3), 77-86. https://doi.org/10.1016/0378-4290(95)00042-O

  • Jayaweera, J. K. T. P., Herath, V., Jayatilake, D. V., Udumulla, G. S., & Wickramasinghe, H. A. M. (2016). Physiological, biochemical and proteomic responses of rice (Oryza sativa L.) varieties Godaheenati and Pokkali for drought stress at the seedling stage. Tropical Agricultural Research, 27(2), 159-170. https://doi.org/10.4038/tar.v27i2.8164

  • Kaur, S., & Kumar, P. (2020). Ameliorative effect of Trichoderma, rhizobium and mycorrhiza on internodal length, leaf area and total soluble protein in mung bean (Vigna radiata [L.] R. Wilczek) under drought stress. Journal of Pharmacognosy and Phytochemistry, 9(4), 971-977.

  • Khadka, R. B., & Uphoff, N. (2019). Effects of Trichoderma seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ, 7, e5877. https://doi.org/10.7717/peerj.5877

  • Li, X., Bu, N., Li, Y., Ma, L., Xin, S., & Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213-214, 55-61. https://doi.org/10.1016/j.jhazmat.2012.01.052

  • Lynch, J. M. (2004). Plant growth-promoting agents. In A. T. Bull (Ed.), Microbial diversity and bioprospecting (pp. 391-396). American Society for Microbiology Press. https://doi.org/10.1128/9781555817770.ch34

  • Makino, A. (2011). Photosynthetic, grain yield and nitrogen utilization in rice and wheat. Plant Physiology, 155(1), 125-129. https://doi.org/10.1104/pp.110.165076

  • Malinowski, D. P., & Belesky, D. P. (2000). Adaptation of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 40(4), 923-940. https://doi.org/10.2135/cropsci2000.404923x

  • Mastouri, F. (2010). Use of Trichoderma spp. to improve plant performance under abiotic stress [Doctoral thesis, Cornell University]. eCommons. https://ecommons.cornell.edu/handle/1813/17620

  • Miché, M., & Balandreau, J. (2001). Effects of rice seeds surface sterilization with hypochlorite on inoculated Burkholderia viatnemensis. Applied and Environmental Microbiology, 67(7), 3046-3052. https://doi.org.10.1128/AEM.67.7.3046-3052.2001

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystem. Journal of Applied Ecology, 9(3), 747-766. https://doi.org/10.2307/2401901

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140

  • Plaut, Z., Butow, B. J., Blumenthal, C. S., & Wrigley, C. W. (2004). Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 86(2-3), 185-198. https://doi.org/10.1016/j.fcr.2003.08.005

  • Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G., & Atabaki, N. (2018). Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools and the WRKY gene family. BioMed Research International, 2018, 3158474. htpps://doi.org/10.1155/2018/3158474

  • Sanders, G. J., & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In R. Aroca (Ed.), Plant responses to drought stress (pp. 199-229). Springer. https://doi.org/10.1007/978-3-642-32653-0_8

  • Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2012). Biochemical and physiological response of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88. https://doi.org/10.1016/j.plaphy.2012.02.001

  • Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2014). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of Applied Biology, 166(2), 171-182. https://doi.org/10.1111/aab.12160

  • Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestic, M., Afrin, S., Sakil, M. A., Hossain, M. T., Hossain, M. N., & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environment, 66(1), 7-13. https://doi.org/10.17221/472/2019-PSE

  • Sugiharto, A., Napitupulu, T. P., & Sudiana, I. M. (2020). The influence of biocarrier of Aspergillus niger and Trichoderma harzianum toward vegetative growth of sorghum in the field experiment. Journal of Microbial Systematics and Biotechnology, 2(2), 28-34.

  • Szeicz, G. (1974). Solar radiation in crop canopies. Journal of Applied Ecology, 11(3), 1117-1156. https://doi.org/10.2307/2401769

  • Tan, A. K. Z., Othman, R., Mohd Saud, H., Abdul Rahim, K., Md. Zain, A., & Shamsuddin, Z. (2017). Growth and yield responses of rice CV. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations under different fertilizer-N rates. Bangladesh Journal of Botany, 46(1), 481-488.

  • Tao, H., Brueck, H., Dittert, K., Kreye, C., Lin, S., & Sattelmacher, B. (2006). Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 95(1), 1-12. https://doi.org/10.1016/j.fcr.2005.01.019

  • Trethowan, R. M., van Ginkel, M., & Rajaram, S. (2002). Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Science, 42(5), 1441–1446. https://doi.org/10.2135/cropsci2002.1441

  • Zain, N. A. M., Ismail, M. R., Mahmood, M., Puteh, A., & Ibrahim, M. H. (2014). Alleviation of water stress effects on MR220 rice by application of periodical water stress and potassium fertilization. Molecules, 19(2), 1795-1819. https://doi.org/10.3390/molecules19021795

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JTAS-2653-2022

Download Full Article PDF

Share this article

Related Articles