e-ISSN 2231-8526
ISSN 0128-7680
Iffatul Arifah Yusup, Martini Mohammad Yusoff, Mohd Razi Ismail, Zulkarami Berahim and Fariz Adzmi
Pertanika Journal of Science & Technology, Volume 46, Issue 3, August 2023
DOI: https://doi.org/10.47836/pjtas.46.3.09
Keywords: Ceptometer, chlorophyll, photosynthesis, radiation, weight
Published on: 30 August 2023
During low rainfall periods, rice plants often face drought stress, which would significantly affect rice yield. One of the methods to mitigate the problem is incorporating rice plants with fungi such as Trichoderma. This study evaluated the effects of encapsulated Trichoderma asperellum (UPM 40) on the growth and yield of rice plants planted in saturated and flooded soil conditions in response to drought stress. A randomized complete block factorial design was implemented with four replications and two factors. The first factor was encapsulated T. asperellum (UPM 40) concentration of 0 and 5 g. The second factor was the soil condition: saturated and flooded soil. The drought stress was imposed by halting watering during early anthesis for 14 days and resumed afterward. One of the significant interaction effects detected was on the relative water content of rice plants planted in flooded soil conditions and treated with T. asperellum (UPM 40), where the value was 78.51%, higher than the control of 72.09%, which showed the ability of the fungus to help rice plants alleviate detrimental effects of drought stress and delay the onset of adverse effects of drought stress. Thus, it contributed to the crop’s simultaneous improvement in rice yield compared to untreated plants in saturated soil. Applying 5 g encapsulated T. asperellum (UPM 40) to the rice plants would perform best in flooded soil conditions during drought stress.
Adams, P., De-Leij, F. A. A. M., & Lynch, J. M. (2007). Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology, 54, 306-313. https://doi.org/10.1007/s00248-006-9203-0
Adzmi, F., Meon, S., Musa, M. H., & Yusuf, N. A. (2012). Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM 40 in alginate-montmorillonite clay. Journal of Microencapsulation, 29(3), 205-210. https://doi.org/10.3109/02652048.2012.659286
Arnon, D., I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
Asseng, S., & van Herwaarden, A. F. (2003). Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil, 256, 217-219. https://doi.org/10.1023/A:1026231904221
Bae, H., Sicher, R. C., Kim, M. S., Kim S. H., Strem, M. D., Melnick, R. L., & Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60(11), 3279-3295. https://doi.org/10.1093/jxb/erp165
Bat-Oyun, T., Shinoda, M., & Tsubo, M. (2011). Effects of water and temperature stresses on radiation use efficiency in a semi-arid grassland. Journal of Plant Interactions, 7(3), 214-224. https://doi.org/10.1080/17429145.2011.564736
Bhushan, D., Pandey, A., Choudhary, M. K., Datta, A., Chakraborty, S., & Chakraborty, N. (2007). Comparative proteomic analysis of differential expressed proteins in chickpea extracellular matrix during dehydration stress. Molecular and Cellular Proteomics, 6(11), 1868-1884. https://doi.org/10.1074/mcp.M700015-MCP200
Chamswarng, C., & Kumchang, T. (2012). Efficacy of wettable pellet bioproduct of Trichoderma harzianum strain 01-52 for reducing dirty panicle disease on rice under field conditions. Thai Phytopathology, 26, 69-80.
Charoenrak, P., & Chamswarng, C. (2016). Efficacies of wettable pellet and fresh culture of Trichoderma asperellum biocontrol products in growth promoting and reducing dirty panicles of rice. Agriculture and Natural Resources, 50(4), 243-249. https://doi.org/10.1016/j.anres.2016.04.001
Chaves, M. M., Maroco, J. P., & Pareira, J. S. (2003). Understanding plant responses to drought – From genes to the whole plant. Functional Plant Biology, 30(3), 239-264. https://doi.org/10.1071/fp02076
Crosson, P. (1995). Natural resource and environmental consequences of rice production. In Fragile Lives in Fragile Ecosystems: Proceedings of the International Rice Research Conference (pp. 83-100). International Rice Research Institute.
Donald, C. M., & Hamblin, J. (1976). The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy, 28, 361-405. https://doi.org/10.1016/S0065-2113(08)60559-3
Doni, F., Isahak, A., Zain, C. R. C. M., & Yusoff, W. M. W. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, 4, 45. https://doi.org/10.1186/s13568-014-0045-8
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1051/agro:2008021
Gallagher, J. N., & Biscoe, P. V. (1978). Radiation absorption, growth and yield of cereals. The Journal of Agricultural Science, 91(1), 47-60. https://doi.org/10.1017/S0021859600056616
Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377-393. https://doi.org/10.1094/PDIS.2000.84.4.377
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797
HongBo, S., ZongSuo, L., & MingAn, S. (2005). Changes of anti-oxidative enzymes and MDA under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces, 45(1), 7-13. https://doi.org/10.1016/j.colsurfb.2005.06.016
Isendahl, N., & Schmidt, G. (2006). Drought in the Mediterranean: WWF policy proposals. World Wide Fund for Nature. https://www.wwf.or.jp/activities/lib/pdf/wwf_drought_med_report_2006.pdf
Jamieson, P. D., Martin, R. J., Francis, G. S., & Wilson, D. R. (1995). Drought stress on biomass production and radiation-use efficiency in barley. Field Crops Research, 43(2-3), 77-86. https://doi.org/10.1016/0378-4290(95)00042-O
Jayaweera, J. K. T. P., Herath, V., Jayatilake, D. V., Udumulla, G. S., & Wickramasinghe, H. A. M. (2016). Physiological, biochemical and proteomic responses of rice (Oryza sativa L.) varieties Godaheenati and Pokkali for drought stress at the seedling stage. Tropical Agricultural Research, 27(2), 159-170. https://doi.org/10.4038/tar.v27i2.8164
Kaur, S., & Kumar, P. (2020). Ameliorative effect of Trichoderma, rhizobium and mycorrhiza on internodal length, leaf area and total soluble protein in mung bean (Vigna radiata [L.] R. Wilczek) under drought stress. Journal of Pharmacognosy and Phytochemistry, 9(4), 971-977.
Khadka, R. B., & Uphoff, N. (2019). Effects of Trichoderma seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ, 7, e5877. https://doi.org/10.7717/peerj.5877
Li, X., Bu, N., Li, Y., Ma, L., Xin, S., & Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213-214, 55-61. https://doi.org/10.1016/j.jhazmat.2012.01.052
Lynch, J. M. (2004). Plant growth-promoting agents. In A. T. Bull (Ed.), Microbial diversity and bioprospecting (pp. 391-396). American Society for Microbiology Press. https://doi.org/10.1128/9781555817770.ch34
Makino, A. (2011). Photosynthetic, grain yield and nitrogen utilization in rice and wheat. Plant Physiology, 155(1), 125-129. https://doi.org/10.1104/pp.110.165076
Malinowski, D. P., & Belesky, D. P. (2000). Adaptation of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 40(4), 923-940. https://doi.org/10.2135/cropsci2000.404923x
Mastouri, F. (2010). Use of Trichoderma spp. to improve plant performance under abiotic stress [Doctoral thesis, Cornell University]. eCommons. https://ecommons.cornell.edu/handle/1813/17620
Miché, M., & Balandreau, J. (2001). Effects of rice seeds surface sterilization with hypochlorite on inoculated Burkholderia viatnemensis. Applied and Environmental Microbiology, 67(7), 3046-3052. https://doi.org.10.1128/AEM.67.7.3046-3052.2001
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystem. Journal of Applied Ecology, 9(3), 747-766. https://doi.org/10.2307/2401901
Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140
Plaut, Z., Butow, B. J., Blumenthal, C. S., & Wrigley, C. W. (2004). Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 86(2-3), 185-198. https://doi.org/10.1016/j.fcr.2003.08.005
Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G., & Atabaki, N. (2018). Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools and the WRKY gene family. BioMed Research International, 2018, 3158474. htpps://doi.org/10.1155/2018/3158474
Sanders, G. J., & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In R. Aroca (Ed.), Plant responses to drought stress (pp. 199-229). Springer. https://doi.org/10.1007/978-3-642-32653-0_8
Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2012). Biochemical and physiological response of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88. https://doi.org/10.1016/j.plaphy.2012.02.001
Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2014). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of Applied Biology, 166(2), 171-182. https://doi.org/10.1111/aab.12160
Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestic, M., Afrin, S., Sakil, M. A., Hossain, M. T., Hossain, M. N., & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environment, 66(1), 7-13. https://doi.org/10.17221/472/2019-PSE
Sugiharto, A., Napitupulu, T. P., & Sudiana, I. M. (2020). The influence of biocarrier of Aspergillus niger and Trichoderma harzianum toward vegetative growth of sorghum in the field experiment. Journal of Microbial Systematics and Biotechnology, 2(2), 28-34.
Szeicz, G. (1974). Solar radiation in crop canopies. Journal of Applied Ecology, 11(3), 1117-1156. https://doi.org/10.2307/2401769
Tan, A. K. Z., Othman, R., Mohd Saud, H., Abdul Rahim, K., Md. Zain, A., & Shamsuddin, Z. (2017). Growth and yield responses of rice CV. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations under different fertilizer-N rates. Bangladesh Journal of Botany, 46(1), 481-488.
Tao, H., Brueck, H., Dittert, K., Kreye, C., Lin, S., & Sattelmacher, B. (2006). Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 95(1), 1-12. https://doi.org/10.1016/j.fcr.2005.01.019
Trethowan, R. M., van Ginkel, M., & Rajaram, S. (2002). Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Science, 42(5), 1441–1446. https://doi.org/10.2135/cropsci2002.1441
Zain, N. A. M., Ismail, M. R., Mahmood, M., Puteh, A., & Ibrahim, M. H. (2014). Alleviation of water stress effects on MR220 rice by application of periodical water stress and potassium fertilization. Molecules, 19(2), 1795-1819. https://doi.org/10.3390/molecules19021795
ISSN 0128-7680
e-ISSN 2231-8526