PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Science & Technology, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Alharby, H. F., Metwali, E. M. R., Fuller, M. P., & Aldhebiani, A. Y. (2016). The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi Journal of Biological Sciences, 23(6), 773–781. https://doi.org/10.1016/j.sjbs.2016.04.012

  • Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M., & Masmoudi, K. (2007). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports, 26, 2017–2026. https://doi.org/10.1007/s00299-007-0412-x

  • Chen, R.-G., Jing, H., Guo, W.-L., Wang, S.-B., Ma, F., Pan, B.-G., & Gong, Z.-H. (2015). Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Reports, 34, 2189–2200. https://doi.org/10.1007/s00299-015-1862-1

  • Chun, H. C., Lee, S., Choi, Y. D., Gong, D. H., & Jung, K. Y. (2021). Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Journal of Integrative Agriculture, 20(10), 2639–2651. https://doi.org/10.1016/S2095-3119(20)63560-2

  • Cushman, J. C. (2001). Osmoregulation in plants: Implications for agriculture. American Zoologist, 41(4), 758–769. https://doi.org/10.1668/0003-1569(2001)041[0758:OIPIFA]2.0.CO;2

  • Durand, M., Porcheron, B., Hennion, N., Maurousset, L., Lemoine, R., & Pourtau, N. (2016). Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, 170(3), 1460–1479. https://doi.org/10.1104/pp.15.01926

  • Farooq, M., Basra, S. M. A., Wahid, A., Ahmad, N., & Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195(4), 237–246. https://doi.org/10.1111/j.1439-037X.2009.00365.x

  • Farooq, M., Kobayashi, N., Ito, O., Wahid, A., & Serraj, R. (2010). Broader leaves result in better performance of indica rice under drought stress. Journal of Plant Physiology, 167(13), 1066–1075. https://doi.org/10.1016/j.jplph.2010.03.003

  • Jing, H., Li, C., Ma, F., Ma, J.-H., Khan, A., Wang, X., Zhao, L.-Y., Gong, Z.-H., & Chen, R.-G. (2016). Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PLOS One, 11(8), e0161073. https://doi.org/10.1371/journal.pone.0161073

  • Kang, J., Peng, Y., & Xu, W. (2022). Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences, 23(16), 9310. https://doi.org/10.3390/ijms23169310

  • Li, Y., Li, H., Li, Y., & Zhang, S. (2017). Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 5(3), 231–239. https://doi.org/10.1016/j.cj.2017.01.001

  • Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy, 11(3), 435. https://doi.org/10.3390/agronomy11030435

  • Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911. https://doi.org/10.3389/fpls.2020.591911

  • Meng, Y.-C., Zhang, H.-F., Pan, X.-X., Chen, N., Hu, H.-F., ul Haq, S., Khan, A., & Chen, R.-G. (2021). CaDHN3, a pepper (Capsicum annuum L.) dehydrin gene enhances the tolerance against salt and drought stresses by reducing ROS accumulation. International Journal of Molecular Sciences, 22(6), 3205. https://doi.org/10.3390/ijms22063205

  • Menteri Pertanian Republik Indonesia. (2005). Pelepassan cabe keriting hibrida TM 999 sebagai varietas unggul [Release of hybrid curly pepper TM 999 as a superior variety]. https://benih.pertanian.go.id/storage/VdemE1na7WTqlTyhPTeiIcP8p9BdXp-metaU0sgQ2FiYWkgS2VyaXRpbmcgVE0gOTk5LnBkZg==-.pdf

  • Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. The New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x

  • Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P., & Palva, E. T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology, 54, 743–753. https://doi.org/10.1023/B:PLAN.0000040903.66496.a4

  • Rao, K. V. M., Raghavendra, A. S., & Reddy, K. J. (Eds.). (2006). Physiology and molecular biology of stress tolerance in plants. Springer. https://doi.org/10.1007/1-4020-4225-6

  • Sari, D. P., & Harlita. (2018). Preparasi hands free section dengan teknik replika untuk identifikasi stomata [Hand free section preparation through replica technique for stomata identification]. Proceeding Biology Education Conference: Biology, Science, Enviromental, and Learning, 15(1), 660-664.

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108. https://doi.org/10.1038/nprot.2008.73

  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259

  • Sirappa, M. P., & Titahena, M. L. J. (2014). Improvement of suboptimal land productivity approach by land and plant management. Journal of Tropical Soils, 19(2), 99–109.

  • Smith, M. A., & Graether, S. P. (2022). The disordered dehydrin and its role in plant protection: A biochemical perspective. Biomolecules, 12(2), 294. https://doi.org/10.3390/biom12020294

  • van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005

  • Xiao, F., & Zhou, H. (2023). Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science, 13, 1053699. https://doi.org/10.3389/fpls.2022.1053699

  • Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657. https://doi.org/10.3389/fpls.2016.00657

  • Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. The New Phytologist, 217(2), 523–539. https://doi.org/10.1111/nph.14920

  • Yuxiu, Z., Zi, W., & Jin, X. (2007). Molecular mechanism of dehydrin in response to environmental stress in plant. Progress in Natural Science, 17(3), 237–246. https://doi.org/10.1080/10020070612331343254

  • Zhang, Y., Lv, Y., Jahan, N., Chen, G., Ren, D., & Guo, L. (2018). Sensing of abiotic stress and ionic stress responses in plants. International Journal of Molecular Sciences, 19(11), 3298. https://doi.org/10.3390/ijms19113298

  • Zhao, C., Zhang, H., Song, C., Zhu, J.-K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

J

Download Full Article PDF

Share this article

Recent Articles