Home / Regular Issue / JSSH Vol. 29 (4) Oct. 2021 / JST-2591-2021


Optimisation of Free Fatty Acid Removal in Nyamplung Seed Oil (Callophyllum inophylum L.) using Response Surface Methodology Analysis

Ratna Dewi Kusumaningtyas, Haniif Prasetiawan, Radenrara Dewi Artanti Putri, Bayu Triwibowo, Siti Choirunisa Furi Kurnita, Nanda Dwi Anggraeni, Harumi Veny, Fazlena Hamzah and Miradatul Najwa Muhd Rodhi

Pertanika Journal of Social Science and Humanities, Volume 29, Issue 4, October 2021

DOI: https://doi.org/10.47836/pjst.29.4.20

Keywords: Biodiesel, Box-Behnken, esterification, FFA, quadratic model, RSM, sulfuric acid

Published on: 29 October 2021

Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.

  • Aboelazayem, O., Gadalla, M., & Saha, B. (2018). Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation. Renewable Energy, 124, 144-154. https://doi.org/10.1016/j.renene.2017.06.076

  • Ahmad, A., Rehman, M. U., Wali, A. F., El-Serehy, H. A., Al-Misned, F. A., Maodaa, S. N., Aljawdah, H. M., Mir, T. M., & Ahmad, P. (2020). Box–Behnken response surface design of polysaccharide extraction from Rhododendron arboreum and the evaluation of its antioxidant potential. Molecules, 25(17), Article 3835. https://doi.org/10.3390/molecules25173835

  • Amdoun, R., Khelifi, L., Khelifi-Slaoui, M., Amroune, S., Asch, M., Assaf-ducrocq, C., & Gontier, E. (2018). The desirability optimization methodology: A tool to predict two antagonist responses in biotechnological systems: Case of biomass growth and hyoscyamine content in elicited datura starmonium hairy roots. Iranian Journal of Biotechnology, 16(1), 11-19. https://doi.org/10.21859/ijb.1339

  • Aparamarta, H. W., Gunawan, S., Husin, H., Azhar, B., & Aditya, H. T. (2020). The effect of high oleic and linoleic fatty acid composition for quality and economical of biodiesel from crude Calophyllum inophyllum oil (CCIO) with microwave-assisted extraction (MAE), batchwise solvent extraction (BSE), and combination of MAE-BSE meth. Energy Reports, 6, 3240-3248. https://doi.org/10.1016/j.egyr.2020.11.197

  • Arora, R., Toor, A. P., & Wanchoo, R. K. (2015). Esterification of high free fatty acid rice bran oil: Parametric and kinetic study. Chemical and Biochemical Engineering Quarterly, 29(4), 617-623. https://doi.org/10.15255/CABEQ.2014.2117

  • Atabani, A. E., & César, A. D. S. (2014). Calophyllum inophyllum L. - A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable and Sustainable Energy Reviews, 37, 644-655. https://doi.org/10.1016/j.rser.2014.05.037

  • Banani, R., Youssef, S., Bezzarga, M., & Abderrabba, M. (2015). Waste frying oil with high levels of free fatty acids as one of the prominent sources of biodiesel production. Journal of Materials and Environmental Science, 6(4), 1178-1185.

  • Banchero, M., & Gozzelino, G. (2018). A simple pseudo-homogeneous reversible kinetic model for the esterification of different fatty acids with methanol in the presence of Amberlyst-15. Energies, 11(7), Article 1843. https://doi.org/10.3390/en11071843

  • Chai, M., Tu, Q., Lu, M., & Yang, Y. J. (2014). Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology, 125, 106-113. https://doi.org/10.1016/j.fuproc.2014.03.025

  • Corach, J., Sorichetti, P. A., & Romano, S. D. (2017). Permittivity of diesel fossil fuel and blends with biodiesel in the full range from 0% to 100%: Application to biodiesel content estimation. Fuel, 188, 367-373. https://doi.org/10.1016/j.fuel.2016.10.019

  • Dal Pozzo, D. M., Azevedo Dos Santos, J. A., Júnior, E. S., Santos, R. F., Feiden, A., Melegari De Souza, S. N., & Burgardt, I. (2019). Free fatty acids esterification catalyzed by acid Faujasite type zeolite. RSC Advances, 9, 4900-4907. https://doi.org/10.1039/c8ra10248a

  • Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47(15-16), 2271-2282. https://doi.org/10.1016/j.enconman.2005.11.019

  • Dey, S., Reang, N. M., Das, P. K., & Deb, M. (2021). A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. Journal of Cleaner Production, 286, Article 124981. https://doi.org/10.1016/j.jclepro.2020.124981

  • Encinar, J. M., Nogales-Delgado, S., & Sánchez, N. (2021). Pre-esterification of high acidity animal fats to produce biodiesel: Akinetic study. Arabian Journal of Chemistry, 14(4), Article 103048. https://doi.org/10.1016/j.arabjc.2021.103048

  • Gebremariam, S. N., & Marchetti, J. M. (2018). Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts. Energy Conversion and Management, 171(June), 1712-1720. https://doi.org/10.1016/j.enconman.2018.06.105

  • Ghasemian, S., Faridzad, A., Abbaszadeh, P., Taklif, A., Ghasemi, A., & Hafezi, R. (2020). An overview of global energy scenarios by 2040: Identifying the driving forces using cross-impact analysis method. International Journal of Environmental Science and Technology, 1-24. https://doi.org/10.1007/s13762-020-02738-5

  • Harun, F. W., Jihadi, N. I. M., Ramli, S., Hassan, N. R. A., & Zubir, N. A. M. (2018). Esterification of oleic acid with alcohols over Cu-MMT K10 and Fe-MMT K10 as acid catalysts. In AIP Conference Proceedings (Vol. 1972, No. 1, p. 030025). AIP Publishing LLC. https://doi.org/10.1063/1.5041246

  • Islam, A., Taufiq-Yap, Y. H., Chan, E. S., Moniruzzaman, M., Islam, S., & Nabi, M. N. (2014). Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Conversion and Management, 88, 1200-1218. http://dx.doi.org/10.1016/j.enconman.2014.04.037

  • Kusumaningtyas, R. D., Aji, I. N., Hadiyanto, H., & Budiman, A. (2016). Application of tin(II) chloride catalyst for high FFA jatropha oil esterification in continuous reactive distillation column. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 66-74. https://doi.org/10.9767/bcrec.11.1.417.66-74

  • Kusumaningtyas, R. D., Akbar, M. H., & Widjanarko, D. (2019). Reduction of FFA in kapok randu (Ceiba pentandra) seed oil via esterification reaction using sulfuric acid catalyst: Experimental and kinetics study. Jurnal Bahan Alam Terbarukan, 8(2), 156-166.

  • Kusumaningtyas, R. D., Handayani, P. A., Rochmadi, Purwono, S., & Budiman, A. (2014). Tin(II)chloride catalyzed esterification of high FFA jatropha oil: Experimental and kinetics study. International Journal of Renewable Energy Development, 3(2), 7581. https://doi.org/http://dx.doi.org/10.14710/ijred.3.2.75-81

  • Kusumaningtyas, R. D., Prasetiawan, H., Pratama, B. R., Prasetya, D., & Hisyam, A. (2018). Esterification of non-edible oil mixture in reactive distillation column over solid acid catalyst: Experimental and simulation study. Journal of Physical Science, 29(II), 212226. https://doi.org/10.21315/jps2018.29.s2.17

  • Lamas, D. L., Constenla, D. T., & Raab, D. (2016). Effect of degumming process on physicochemical properties of sunflower oil. Biocatalysis and Agricultural Biotechnology, 6(March), 138-143. https://doi.org/10.1016/j.bcab.2016.03.007

  • Liu, J., Wang, J., Leung, C., & Gao, F. (2018). A multi-parameter optimization model for the evaluation of shale gas recovery enhancement. Energies, 11(3), Article 654. https://doi.org/10.3390/en11030654

  • Liu, W., Yin, P., Liu, X., & Qu, R. (2014). Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA. Bioresource Technology, 173, 266-271. https://doi.org/10.1016/j.biortech.2014.09.087

  • Maran, J. P., & Priya, B. (2015). Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrasonics Sonochemistry, 23, 192-200. https://doi.org/10.1016/j.ultsonch.2014.10.019

  • Marchetti, J. M., & Errazu, A. F. (2008). Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy, 32(9), 892-895. https://doi.org/10.1016/j.biombioe.2008.01.001

  • Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M., & Taitai, A. (2017). Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arabian Journal of Chemistry, 10, S3292-S3302. https://doi.org/10.1016/j.arabjc.2013.12.028

  • Mubarak, M., Shaija, A., & Suchithra, T. V. (2021). Experimental evaluation of Salvinia molesta oil biodiesel/diesel blends fuel on combustion, performance and emission analysis of diesel engine. Fuel, 287, Article 119526. https://doi.org/10.1016/j.fuel.2020.119526

  • Murad, P. C., Hamerski, F., Corazza, M. L., Luz, L. F. L., & Voll, F. A. P. (2018). Acid-catalyzed esterification of free fatty acids with ethanol: An assessment of acid oil pretreatment, kinetic modeling and simulation. Reaction Kinetics, Mechanisms and Catalysis, 123(2), 505-515. https://doi.org/10.1007/s11144-017-1335-3

  • Musta, R., Haetami, A., & Salmawati, M. (2017). Biodiesel hasil transesterifikasi minyak biji Nyamplung (Calophyllum inophyllum) dengan metanol [Biodiesel of the transesterification product of Calophyllum inophyllum seed oil from kendari using methanol solution]. Indonesian Journal of Chemical Research, 4(2), 394-401. https://doi.org/10.30598//ijcr.2017.4-rus

  • Ong, H. C., Milano, J., Silitonga, A. S., Hassan, M. H., Shamsuddin, A. H., Wang, C. T., Indra Mahlia, T. M., Siswantoro, J., Kusumo, F., & Sutrisno, J. (2019). Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. Journal of Cleaner Production, 219, 183-198. https://doi.org/10.1016/j.jclepro.2019.02.048

  • Paraschiv, S., & Paraschiv, L. S. (2020). Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Reports, 6, 237-242. https://doi.org/10.1016/j.egyr.2020.11.116

  • Rodríguez-Ramírez, R., Romero-Ibarra, I., & Vazquez-Arenas, J. (2020). Synthesis of sodium zincsilicate (Na2ZnSiO4) and heterogeneous catalysis towards biodiesel production via Box-Behnken design. Fuel, 280, Article 118668. https://doi.org/10.1016/j.fuel.2020.118668

  • Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., & Chong, W. T. (2014). Biodiesel conversion from high FFA crude jatropha curcas, Calophyllum inophyllum and ceiba pentandra oil. Energy Procedia, 61, 480-483. https://doi.org/10.1016/j.egypro.2014.11.1153

  • Taghizade, Z. (2016). Determination of biodiesel quality parameters for optimization of production process conditions. Polytechnic Institute of Bragança.

  • Veljković, V. B., Veličković, A. V., Avramović, J. M., & Stamenković, O. S. (2019). Modeling of biodiesel production: Performance comparison of Box–Behnken, face central composite and full factorial design. Chinese Journal of Chemical Engineering, 27(7), 1690-1698. https://doi.org/10.1016/j.cjche.2018.08.002

  • Widiarti, N., Suryana, L. A., Wijayati, N., Rahayu, E. F., Harjito, H., Wardhana, S. B., Prasetyoko, D., & Suprapto, S. (2017). Synthesis of SrO.SiO2 catalyst and its application in the transesterification reactions of soybean oil. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 299-305. https://doi.org/10.9767/bcrec.12.2.804.299-305