e-ISSN 2231-8534
ISSN 0128-7702
J
Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abdi, A., Hasan, S., Arshi, M., Shamsuddin, S. M., & Idris, N. (2020). A question answering system in hadith using linguistic knowledge. Computer Speech & Language, 60, Article 101023. https://doi.org/10.1016/j.csl.2019.101023
Al Sallab, A. A., Baly, R., Badaro, G., Hajj, H. M., El-Hajj, W., & Shaban, K. (2015a, March 9-10). Towards deep learning models for sentiment analysis in Arabic. In Machine Learning and Data Analytics Symposium - MLDAS 2015 (pp. 1-5). Doha, Qatar. https://doi.org/10.18653/v1/W15-3202
Al Sallab, A., Hajj, H., Badaro, G., Baly, R., El-Hajj, W., & Shaban, K. (2015b, July 26-31). Deep learning models for sentiment analysis in Arabic. In Proceedings of the Second Workshop on Arabic Natural Language Processing (pp. 9-17). Beijing, China. https://doi.org/10.18653/v1/W15-3202
Al Sallab, A., Rashwan, M., Raafat, H., & Rafea, A. (2014, October 25). Automatic Arabic diacritics restoration based on deep nets. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP) (pp. 65-72). Doha, Qatar. https://doi.org/10.3115/v1/W14-3608
Al-Sallab, A., Baly, R., Hajj, H., Shaban, K. B., El-Hajj, W., & Badaro, G. (2017). Aroma: A recursive deep learning model for opinion mining in arabic as a low resource language. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 16(4), 1-20. https://doi.org/10.1145/3086575
Antoun, W., Baly, F., & Hajj, H. (2020). Arabert: Transformer-based model for arabic language understanding. arXiv Preprint.
Athiwaratkun, B., Wilson, A. G., & Anandkumar, A. (2018). Probabilistic fasttext for multi-sense word embeddings. arXiv Preprint. https://doi.org/10.18653/v1/P18-1001
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv Preprint.
Baly, R., Badaro, G., Hamdi, A., Moukalled, R., Aoun, R., El-Khoury, G., El-Sallab, A., Hajj, H., Habash, N., Shaban, K. B., & El-Hajj, W. (2017). Omam at semeval-2017 task 4: Evaluation of English state-of-the-art sentiment analysis models for Arabic and a new topic-based model. In Proceedings of the 11th International Workshop on Semantic Evaluation (SEMEVAL-2017) (pp. 603-610). ACM Publishing. https://doi.org/10.18653/v1/S17-2099
Baly, R., Hobeica, R., Hajj, H., El-Hajj, W., Shaban, K. B., & Al-Sallab, A. (2016). A meta-framework for modeling the human reading process in sentiment analysis. ACM Transactions on Information Systems (TOIS), 35(1), 1-21. https://doi.org/10.1145/2950050
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … & Amodei, D. (2020). Language models are few-shot learners. arXiv Preprint.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv Preprint.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv Preprint.
Djandji, M., Baly, F., Antoun, W., & Hajj, H. (2020). Multi-task learning using AraBert for offensive language detection. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection (pp. 97-101). European Language Resource Association.
Essam, O. (2017). Arabic AskFM dataset. Data Science.
Hamoud, B., & Atwell, E. (2016). Quran question and answer corpus for data mining with WEKA. In 2016 Conference of Basic Sciences and Engineering Studies (SGCAC) (pp. 211-216). IEEE Publishing. https://doi.org/10.1109/SGCAC.2016.7458032
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv Preprint. https://doi.org/10.18653/v1/P18-1031
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv Preprint. https://doi.org/10.18653/v1/D15-1166
Magooda, A., Sayed, A. M., Mahgoub, A. Y., Ahmed, H., Rashwan, M., Raafat, H., Kamal, E., & & Al Sallab, A. A. (2016). RDI_Team at SemEval-2016 Task 3: RDI unsupervised framework for text ranking. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) (pp. 822-827). ACM Publishing. https://doi.org/10.18653/v1/S16-1127
Nada, A. M. A., Alajrami, E., Al-Saqqa, A. A., & Abu-Naser, S. S. (2020). Arabic text summarization using AraBERT model using extractive text summarization approach. International Journal of Academis Information Systems Research, 4(8), 6-9.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv Preprint. https://doi.org/10.18653/v1/N18-1202
Rashwan, M. A., Al Sallab, A. A., Raafat, H. M., & Rafea, A. (2015). Deep learning framework with confused sub-set resolution architecture for automatic Arabic diacritization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3), 505-516. https://doi.org/10.1109/TASLP.2015.2395255
Sihotang, M. T., Jaya, I., Hizriadi, A., & Hardi, S. M. (2020). Answering Islamic questions with a chatbot using fuzzy string-matching algorithm. In Journal of Physics: Conference Series (Vol. 1566, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1742-6596/1566/1/012007
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS 2017) (pp. 5998-6008). Long Beach, USA.
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles