Home / Regular Issue / JST Vol. 29 (1) Jan. 2021 / JST-2060-2020

 

LTE Network Analysis in Frequency Reuse Recycling Techniques

Muhammad Sabir Hussain, Nasri Suleiman and Nor Kamariah Noordin

Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021

DOI: https://doi.org/10.47836/pjst.29.1.27

Keywords: FFR, inner region, LTE network, maximum throughput, optimal radius, outer region

Published on: 22 January 2021

In recent years, several researchers have embraced fractional frequency (FF) reuse as a strategy for resolving the inter-cell and co-channel interferences of adjacent cells (ICI, CCI) as the number of wireless networks grows. This technique is focused on the cell division of two parts, the inner and the outer, which enables multiple frequency bands to be assigned. The frequency advantages can be completely used in each inner zone, since there is no inter-cell disturbance for consumers in inner regions. According to this effective usage of the frequency spectrum available, FF will reduce the interruption of the channel and improve device efficiency. This manuscript presents a comprehensive study of different mechanisms to select the optimal FF scheme based on the user throughput. The analysis was conducted in order to obtain the optimal internal and external range for the cells as well as the optimal frequency distribution between the areas of the FR, Fractional Frequency Reuse 1 (FFR1) and Fractional Frequency Reuse 2 (FFR2) and evaluating their outputs and their number of users. In detail the overall consumer efficiency through the configured frequency distribution is analyzed. The FFR is a resource allocation technique that can effectively mitigate inter-cell interference (ICI) in LTE based HetNets and it is a promising solution. The proposal also employs high number sectors in a cell, low interference and good frequency reuse. The processes are tested by way of multiple modeling simulations.

  • Ali, S. H., & Leung, V. C. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286-4295. doi: 10.1109/TWC.2009.081146

  • Bilios, D., Bouras, C., Kokkinos, V., Papazois, A., & Tseliou, G. (2013). Selecting the optimal fractional frequency reuse scheme in long term evolution networks. Wireless Personal Communications, 71(4), 2693-2712. doi: https://doi.org/10.1007/s11277-012-0965-z

  • Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C. C. (2009, June 14-18). A graph approach to dynamic fractional frequency reuse (FFR) in multi-cell OFDMA networks. In 2009 IEEE International Conference on Communications (pp. 1-6). Dresden, Germany. doi: 10.1109/ICC.2009.5198612

  • Chung, S., Jang, S., & Joe, I. (2014). Selective clustering scheme based on user equipment path and frequency reuse scheme for coordinated multi-point joint processing. IET Communications, 8(17), 2961-2970. doi: 10.1049/iet-com.2013.1186

  • Cong, L. S., Tuan, N. Q., & Sandrasegaran, K. (2020). A general model of fractional frequency reuse: Modelling and performance analysis. VNU Journal of Science: Computer Science and Communication Engineering, 36(1), 38-45. doi: https://doi.org/10.25073/2588-1086/vnucsce.221

  • Elayoubi, S. E., Haddada, O. B., & Fourestie, B. (2008). Performance evaluation of frequency planning schemes in OFDMA-based networks. IEEE Transactions on Wireless Communications, 7(5), 1623-1633. doi: 10.1109/TWC.2008.060458.

  • Group, I. W. (2004). IEEE standard for local and metropolitan area networks-part 16: Air interface for fixed broad-band wireless access systems. New Jersey, USA: Institute of Electrical and Electronics Engineers. doi: 10.1109/IEEESTD.2004.226664

  • Guo, T., & Suárez, A. (2020). Fine-grained frequency reuse in centralized small cell networks. New Jersey, USA: IEEE Transactions on Mobile Computing. doi: 10.1109/TMC.2020.2981032

  • Hambebo, B. M., Carvalho, M. M., & Ham, F. M. (2014, April 7-9). Performance evaluation of static frequency reuse techniques for OFDMA cellular networks. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control (pp. 355-360). Miami, FL, USA. doi: 10.1109/ICNSC.2014.6819652

  • Hashima, S., Muta, O., Alghonimey, M., Shalaby, H., Frukawa, H., Elnoubi, S., & Mahmoud, I. (2014, April 26-28). Area spectral efficiency performance comparison of downlink fractional frequency reuse schemes for MIMO heterogeneous networks. In 2014 International Conference on Information Science, Electronics and Electrical Engineering (Vol. 2, pp. 1005-1010). Sapporo, Japan. doi: 10.1109/InfoSEEE.2014.6947820

  • Hindia, M. N., Reza, A. W., & Noordin, K. A. (2014). Investigation of a New Handover Approach in LTE and WIMAX. The Scientific World Journal, 2014, 1-11. doi: https://doi.org/10.1155/2014/246206

  • Kim, D. C., Kwon, Y. H., Kwak, J. S., Moon, S. H., & Han, S. H. (2014). U.S. Patent No. 8,660,050. Washington, DC: U.S. Patent and Trademark Office.

  • Kim, Y. S., Choi, S. H., Jang, K. H., & Hwang, H. S. (2010). U.S. Patent No. 7,821,976. Washington, DC: U.S. Patent and Trademark Office.

  • Lei, H., Zhang, L., Zhang, X., & Yang, D. (2007, September 3-7). A novel multi-cell OFDMA system structure using fractional frequency reuse. In 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1-5). Athens, Greece. doi: 10.1109/PIMRC.2007.4394228

  • Mannweiler, C., Sartori, C., Wegmann, B., Flinck, H., Maeder, A., Goerge, J., & Winkelmann, R. (2020). Evolution of Mobile Communication Networks. In S. Mwanje & C. Mannweiler (Eds.), Towards Cognitive Autonomous Networks: Network Management Automation for 5G and Beyond (pp. 29-92). Croydon, UK: John Wiley & Sons Ltd. doi: https://doi.org/10.1002/9781119586449.ch2

  • Mao, X., Maaref, A., & Teo, K. H. (2008, November 30 - December 4). Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference (pp. 1-6). New Orleans, LO, USA. doi: 10.1109/GLOCOM.2008.ECP.916

  • Nuaymi, L. (2007). WiMAX: technology for broadband wireless access. Chippenham, UK: John Wiley & Sons.

  • Rumney, M. (2013). LTE and the evolution to 4G wireless: Design and measurement challenges. Singapore: John Wiley & Sons.

  • Saleh, A. M. M. (2020). Performance analysis of fractional frequency reuse schemes in downlink multi-relay multi-cell OFDMA and NOMA cellular networks (PhD Thesis). University of Calgary, Canada.

  • Sheu, T. L., Lin, B. J., & Chou, Z. T. (2015). Analytical models for call blocking and dropping in sectorized cellular networks with fractional frequency reuse. Wireless Communications and Mobile Computing, 15(17), 2125-2140.

  • Simonsson, A. (2007, April 22-25). Frequency reuse and intercell interference co-ordination in E-UTRA. In 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring (pp. 3091-3095). Dublin, Ireland. doi: 10.1109/VETECS.2007.633

  • Soultan, E. M., Nafea, H. B., & Zaki, F. W. (2020). Interference Management for Different 5G Cellular Network Constructions. Wireless personal communications, 115(3) 1-20. doi: https://doi.org/10.1007/s11277-020-07805-1

  • Stiakogiannakis, I. N., & Kaklamani, D. I. (2010, September 26-30). Fractional frequency reuse techniques for multi-cellular WiMAX networks. In 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 2432-2437). Instanbul, Turkey. doi: 10.1109/PIMRC.2010.5671728

  • Taranetz, M., Ikuno, J. C., & Rupp, M. (2011, November 6-9). Capacity density optimization by fractional frequency partitioning. In 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). Pacific Grove, CA.

  • Wang, H. (2013). Biorthogonal frequency division multiple access cellular system with angle division reuse scheme. Wireless Personal Communications, 70(4), 1553-1573. doi: https://doi.org/10.1007/s11277-012-0765-5

  • Wang, K., Li, H., Ma, J., Liu, P., & Pan, H. (2014). Two-level scheme to maximise the number of guaranteed users in downlink femtocell networks. IET Communications, 8(16), 2917-2924. doi: 10.1049/iet-com.2013.0944

  • Zhang, H., Sun, Y., Lou, H. L., & Chu, L. (2017). U.S. Patent No. 9,717,086. Washington, DC: U.S. Patent and Trademark Office.

  • Zhao, Y., Fang, X., Huang, R., & Fang, Y. (2012). Joint interference coordination and load balancing for OFDMA multihop cellular networks. IEEE Transactions on Mobile Computing, 13(1), 89-101. doi: 10.1109/TMC.2012.224

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-2060-2020

Download Full Article PDF

Share this article

Recent Articles