e-ISSN 2231-8526
ISSN 0128-7680
Yusnita Yusuf, Suhaidi Shafie, Ismayadi Ismail, Fauzan Ahmad, Mohd Nizar Hamidon, Pandey Shyam Sudhir and Lei Wei
Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023
DOI: https://doi.org/10.47836/pjst.31.3.12
Keywords: Carbon-based counter electrode, DSSC, g-CNT sheet
Published on: 7 April 2023
This work enlightened the synthesis of graphenated-carbon nanotubes sheet (g-CNT) using the floating-catalyst chemical vapor deposition method (FCCVD) for dye-sensitized solar cell (DSSC) application. The carbon injection flow rate in the experiment was varied to 6, 8, and 10 ml/h. The morphological findings revealed that the g-CNT formed a highly conductive network. Excellent conductivity was obtained for the sample g-CNT8 (34.5 S/cm) compared to the sample g-CNT6 (11.2S/cm) and CNT10 (4.76 S/cm). This excellent feature is due to the hybrid structure of the g-CNT8, which creates efficient electron transfer in the materials resulting in higher conductivity. The hybrid structure provides a high surface area that improves conductivity. Therefore, the g-CNT sheet is an excellent candidate to replace the conventional platinum used as a counter electrode (CE) in DSSC.
Abdullah, H. B., Irmawati, R., Ismail, I., Zaidi, M. A., & Abdullah, A. A. A. (2021). Synthesis and morphological study of graphenated carbon nanotube aerogel from grapeseed oil. Journal of Nanoparticle Research, 23(11), Article 244. https://doi.org/10.1007/s11051-021-05363-6
Adnan, N. L., Ismail, I., & Hashim, M. (2015). Effect of ferrocene concentration on the carbon nanotube cotton synthesized via floating catalyst CVD method. Australian Journal of Basic and Applied Sciences, 9(12), 109-113.
Andualem, A., & Demiss, S. (2018). Review on dye-sensitized solar cells (DSSCs). Edelweiss Applied Science and Technology, 2(1), 145-150. https://doi.org/10.33805/2639-6734.103
Biswas, R. K., Nemala, S. S., & Mallick, S. (2019). Platinum and transparent conducting oxide free graphene-CNT composite based counter-electrodes for dye-sensitized solar cells. Surface Engineering and Applied Electrochemistry, 55(4), 472-480. https://doi.org/10.3103/S1068375519040021
Chang, L. H., Hsieh, C. K., Hsiao, M. C., Chiang, J. C., Liu, P. I., & Ho, K. K. (2013). A graphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counter electrode of dye-sensitized solar cells. Journal of Power Sources, 222, 518-525. https://doi.org/10.1016/j.jpowsour.2012.08.058
Collins, P. G., Zettl, A., Bando, H., Thess, A., & Smalley, R. E. (1997). Nanotube nanodevice. Science, 278(5335), 100-103. https://doi.org/10.1126/science.278.5335.100
Devadiga, D., Selvakumar, M., Shetty, P., & Santosh, M. S. (2021). Dye-sensitized solar cell for indoor applications: A mini-review. Journal of Electronic Materials, 50(6), 3187-3206. https://doi.org/10.1007/s11664-021-08854-3
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595-6663. https://doi.org/10.1021/cr900356p
Ibrahim, N. I., Ismail, I., Mamat, S. M., & Adnan, N. L. (2019). Effect of carbon source injection rate on CNT film via floating catalyst CVD method. Solid State Phenomena, 290, 113-121. https://doi.org/10.4028/www.scientific.net/ssp.290.113
Ismail, I., Yusof, J. M., Nong, M. A. M., & Adnan, N. L. (2018). Synthesis of carbon nanotube-cotton superfiber materials. In Synthesis, Technology and Applications of Carbon Nanomaterials (pp. 61-76). Elsevier. https://doi.org/10.1016/b978-0-12-815757-2.00003-6
Ismail, I., Mamat, S., Adnan, N. L., Yunusa, Z., & Hasan, I. H. (2019). Novel 3-dimensional cotton-like graphenated-carbon nanotubes synthesized via floating catalyst chemical vapour deposition method for potential gas-sensing applications. Journals of Nanomaterials, 2019, 1-10. https://doi.org/10.1155/2019/5717180
Lokman, M. Q., Shaban, S., Shafie, S., Ahmad, F., Yahaya, H., Mohd Rosnan, R., & Ibrahim, M. A. (2021). Improving Ag-TiO2 nanocomposites’ current density by TiCl4 pretreated on FTO glass for dye-sensitised solar cells. Micro & Nano Letters, 16(7), 381-386. https://doi.org/10.1049/mna2.12061
Muhammad, N. Y., Mohtar, M. N., Ramli, M. M., Shafie, S., Shaban, S., & Yusuf, Y. (2020). Enhancement of dye sensitized solar cell by adsorption of graphene quantum dots. International Journal of Materials, Mechanics and Manufacturing, 8(3), 126-130. https://doi.org/10.18178/ijmmm.2020.8.3.494
Ni, Z. H., Fan, H. M., Feng, Y. P., Shen, Z. X., Yang, B. J., & Wu, Y. H. (2006). Raman spectroscopic investigation of carbon nanowalls. The Journal of Chemical Physics, 124(20), Article 204703. https://doi:10.1063/1.2200353
Olsen, E., Hagen, G., & Lindquist, S. E. (2000). Dissolution of platinum in methoxy propionitrile containing LiI/I2. Solar Energy Materials and Solar Cells, 63(3), 267-273. https://doi.org/10.1016/S0927-0248(00)00033-7
Parker, C. B., Raut, A. S., Brown, B., Stoner, B. R., & Glass, J. T. (2012). Three-dimensional arrays of graphenated carbon nanotubes. Journal of Materials Research, 27(7), 1046-1053. https://doi.org/10.1557/jmr.2012.43
Samantaray, M. R., Mondal, A. K., Murugadoss, G., Pitchaimuthu, S., Das, S., Bahru, R., & Mohamed, M. A. (2020). Synergetic effects of hybrid carbon nanostructured counter electrodes for dye-sensitized solar cells : A review. Materials, 13(12), Article 2779. https://doi.org/10.3390/ma13122779
Sharif, N. F. M., Kadir, M. Z. A. A., Shafie, S., Din, M. F., Yusuf, Y., & Samaila, B. (2022). Light absorption enhancement using graphene quantum dots and the effect of N-719 dye loading on the photoelectrode of dye-sensitized solar cell (DSSC). Key Engineering Materials, 908, 259-264. https://doi.org/10.4028/p-0cm1r4
Wahyuono, R. A., Jia, G., Plentz, J., Dellith, A., Dellith, J., Herrmann-Westendorf, F., Dietzek, B. (2019). Self-assembled graphene/MWCNT bilayers as platinum-free counter electrode in dye-sensitized solar cells. ChemPhysChem, 20(24), 3336-3345. https://doi.org/10.1002/cphc.201900714
Wan, N., Sun, L. T., Ding, S. N., Xu, T., Hu, X. H., Sun, J., & Bi, H. C. (2013). Synthesis of graphene-CNT hybrids via joule heating: Structural characterization and electrical transport. Carbon, 53, 260-268. https://doi.org/10.1016/j.carbon.2012.10.057
Wepasnick, K. A., Smith, B. A., Bitter, J. L., & Fairbrother, D. H. (2010). Chemical and structural characterization of carbon nanotube surfaces. Analytical and Bioanalytical Chemistry, 396(3), 1003-1014. https://doi.org/10.1007/s00216-009-3332-5
Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Wei, Y. (2017). Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 46(19), 5975-6023. https://doi.org/10.1039/c6cs00752j
Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Grätzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334, 629-633. https://doi.org/10.1126/science.1209688
Yu, F., Shi, Y., Yao, W., Han, S., & Ma, J. (2019). A new breakthrough for graphene/carbon nanotubes as counter electrodes of dye-sensitized solar cells with up to a 10.69% power conversion efficiency. Journal of Power Sources, 412, 366-373. https://doi.org/10.1016/j.jpowsour.2018.11.066
Yusuf, Y., Shafie, S., Ismail, I., Ahmad, F., Hamidon, M. N., Pandey, S. S., Lei, W. (2021). A comparative study of graphenated-carbon nanotubes cotton and carbon nanotubes as catalyst for counter electrode in dye-sensitized solar cells. Malaysian Journal of Microscopy, 17(2), 162-174. https://malaysianjournalofmicroscopy.org/ojs/index.php/mjm/article/view/543
ISSN 0128-7680
e-ISSN 2231-8526