Home / Regular Issue / JST Vol. 29 (1) Jan. 2021 / JST-2100-2020

 

Revisited the Critical Load Assessment of Huang et al. on Willems Tested Beck Column

Peter Praveen Jakkana, Nageswara Rao Boggarapu, Mahaboob Bodanapu, Appa Rao Bhogapurapu Venkata, Narayana Cherukuri and Harnath Yeddala

Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021

DOI: https://doi.org/10.47836/pjst.29.1.14

Published: 22 January 2021

Dynamic stability of elastic structures is a fascinating topic. Many researchers have examined the problem theoretically considering a cantilever column under a tip-concentrated tangential load, the so-called Beck column. Experimental verification is demanded since the critical load of Beck column is found to be approximately eight times to that of the classical Euler column. Different types of testing procedures are being adopted to create the follower force. Among them, notable Willems experimentation provides the critical load close to that of Beck column. Investigations made by other researchers indicate the controversy associated with modeling and testing of Willems on Beck column. Such an intriguing problem of structures loaded by non-conservative forces is revisited here through a simple mathematical formulation. This paper confirms the adequacy of Willems approach on Beck column and the wrong critical load assessment of others. It indicates the possibility on the practical realization of follower forces

  • Anderson, S. B., & Thomsen, J. J. (2002). Post-critical behavior of Beck’s column with a tip mass. International Journal of Nonlinear Mechanics, 37(1), 135-151. doi: https://doi.org/10.1016/S0020-7462(00)00102-5

  • Augusti, G., Roorda, J., Herrmann, G., & Levinson, M. (1967). Discussion: Experimental verification of the dynamic stability of a tangentially cantilever column. Transactions of ASME Journal of Applied Mechanics, 34(2), 523-524. doi: https://doi.org/10.1115/1.3607729

  • Bolotin, V. V. (1963). Non-conservative problems of the theory of elastic stability. New York, NY: Macmillan.

  • Elishakoff, I. (2005a). Essay on the contributors to the elastic stability theory. Meccanica, 40(1), 75-110. doi: https://doi.org/10.1007/s11012-004-2199-y

  • Elishakoff, I. (2005b). Controversy associated with the so-called ‘Follower Forces’: Critical overview. Applied Mechanics Reviews, 58(2), 117-142. doi: https://doi.org/10.1115/1.1849170

  • Huang, N. C., Nachabar, W., & Nemat-Nasser, S. (1967). On Willems’ experimental verification of the critical load in Beck’s problem. Transactions of ASME Journal of Applied Mechanics, 34(1), 243-245. doi: https://doi.org/10.1115/1.3607646

  • Koiter, W. T. (1996). Unrealistic follower forces. Journal of Sound and Vibration, 194(4), 636-638. doi: https://doi.org/10.1006/jsvi.1996.0383

  • Kwasniewski, L. (2010). Numerical verification of post-critical Beck’s column behavior. International Journal of Nonlinear Mechanics, 45(3), 242-255. doi: https://doi.org/10.1016/j.ijnonlinmec.2009.11.007

  • Langthjem, M. A., & Sugiyama, Y. (2000a). Optimum design of cantilevered columns under the combined action of conservative and non-conservative loads, Part-I: The undamped case. Computers and Structures, 74(4), 385-398. doi: https://doi.org/10.1016/S0045-7949(99)00050-4

  • Langthjem, M. A., & Sugiyama, Y. (2000b). Dynamic stability of columns subjected to follower loads: A survey. Journal of Sound and Vibration, 238(5), 809-851. doi: https://doi.org/10.1006/jsvi.2000.3137

  • Mascolo, I. (2019). Recent developments in the dynamic stability of elastic structures. Frontiers in Applied Mathematics and Statistics, 5, 1-16. doi: 10.3389/fams.2019.00051.

  • Madhusudan, B. P., Rajeev, V. R., & Rao, B. N. (2003). Post-buckling of cantilever columns having variable cross-section under a combined load. International Journal of Non-Linear Mechanics, 38(10), 1513-1522. doi: https://doi.org/10.1016/S0020-7462(02)00086-0

  • Mutyalarao, M., Bharathi, D., & Rao, B. N. (2012). Dynamic stability of cantilever columns under a tip-concentrated sub tangential follower force. Mathematics and Mechanics of Solids, 18(5), 449-463. doi: https://doi.org/10.1177/1081286512442436

  • Mutyalarao, M., Bharathi, D., Narayana, K. L., & Rao, B. N. (2017). How valid are Sugiyama’s experiments on follower forces? International Journal of Non-linear Mechanics, 93, 122-125. doi: https://doi.org/10.1016/j.ijnonlinmec.2014.12.007

  • Mullagulov, M. K. (1994). Experimental-theoretical study of the stability of rods, compressed by follower forces. Strength of Materials, 26(6), 441-446. doi: https://doi.org/10.1007/BF02209415

  • Rao, B. N., & Rao, G. V. (1989a). Post-critical behaviour of a uniform cantilever column under a tip concentrated follower force. Journal of Sound and Vibration, 132(2), 350-352.

  • Rao, B. N., & Rao, G. V. (1989b). Some studies on buckling and post- buckling of cantilever columns subjected to conservative or non-conservative loads. The Journal of the Aeronautical Society of India, 41(2), 165-182.

  • Rao, B. N., & Rao, G. V. (1990). Stability of tapered cantilever columns subjected to a tip concentrated sub tangential follower force. Forschung Im Ingenieurwesen, 56(3), 93-96.

  • Rao, B. N., & Rao, G. V. (1991). Post‐critical behaviour of a tapered cantilever column subjected to a tip‐concentrated follower force. Journal of Applied Mathematics and Mechanics, 71(11), 471-473. doi: https://doi.org/10.1002/zamm.19910711116

  • Sugiyama, Y., Langthjem, M. A., & Ryu, B. J. (1998). Realistic follower forces. Journal of Sound and Vibration, 225(4), 779-782.

  • Sugiyama, Y., Katayama, K., & Kiriyama, K. (2000). Experimental verification of dynamic stability of vertical cantilever columns subjected to a sub-tangential force. Journal of Sound and Vibration, 236(2),193-207. doi: https://doi.org/10.1006/jsvi.1999.2969

  • Sugiyama, Y. (2002). Experimental approach to non-conservative stability problems. In A. P. Seyranian & I. Elishakoff (Eds.), Modern problems of structural Stability (pp. 341-394). Vienna, Austria: Springer. doi: 10.1007/978-3-7091-2560-1

  • Sugiyama, Y., Langthjem, M. A., & Katayama, K. (2019). Dynamic stability of columns under non-conservative forces: Theory and experiments. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-030-00572-6

  • Timoshenko, S. P., & Gere, J. M. (2012). Theory of elastic stability. New Delhi, India: Tata Mc Graw-Hill Education Private Limited.

  • Tomski, L., Przybylski, J., Gołebiowska-Rozanow, M., & Szmidla, J. (1998). Vibration and stability of a cantilever column subject to a follower force passing through a fixed point. Journal of Sound and Vibration, 214(1), 67-81. doi: https://doi.org/10.1006/jsvi.1998.1528

  • Tomski, L., & Szmidla, J. (2004). Theoretical and experimental investigations of the natural vibrations of the divergence and divergence pseudoflutter type systems. In PAMM: Proceedings in Applied Mathematics and Mechanics (Vol. 4, No. 1, pp. 418-419). Berlin, Germany: WILEY‐VCH Verlag.

  • Tomski, L., Szmidla, J., & Uzny, S. (2007). The local and global instability and vibration of systems subjected to non-conservative loading. Thin-Walled Structures, 45(10-11), 945-949. doi: https://doi.org/10.1016/j.tws.2007.08.019

  • Tomski, L., & Uzny, S. (2008). Free vibrations and the stability of a geometrically non-linear column loaded by a follower force directed towards the positive pole. International Journal of Solids and Structures, 45(1), 87-112. doi: https://doi.org/10.1016/j.ijsolstr.2007.07.011

  • Tomski, L., & Uzny, S. (2010). Chosen slender systems in aspect of possibility of specific load realization. Vibrations in Physical Systems, 24, 429-434.

  • Tomski, L., & Uzny, S. (2011). The regions of flutter and divergence instability of a column subjected to Beck’s generalized load, taking into account the torsional flexibility of the loaded end of the column. Mechanics Research Communications, 38(2), 95-100. doi: https://doi.org/10.1016/j.mechrescom.2011.01.013

  • Tomski, L., & Uzny, S. (2013). Free vibrations and stability of a new slender system subjected to a conservative or nonconservative load. Journal of Engineering Mechanics, 139(8), 1133-1148. doi: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000463

  • Willems, N. (1966). Experimental verification of the dynamic stability of a tangentially loaded cantilever column. Transactions of ASME Journal of Applied Mechanics, 33(2), 460-461. doi: https://doi.org/10.1115/1.3625073

  • Zakharov, Y. V., Okhotkin, K. G., & Skorobogatov, A. D. (2004). Bending of bars under a follower load. Journal of Applied Mechanics and Technical Physics, 45(5), 756-763. doi: https://doi.org/10.1023/B:JAMT.0000037975.91152.01

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-2100-2020

Download Full Article PDF

Share this article

Related Articles