Home / Regular Issue / JST Vol. 29 (3) Jul. 2021 / JST-2435-2021


Modelling Benign Ovarian Cyst Risk Factors and Symptoms via Log-Linear Model

Siti Zulaikha Mohd Jamaludin, Mohd Tahir Ismail, Mohd Shareduwan Mohd Kasihmuddin, Mohd. Asyraf Mansor, Siti Noor Farwina Mohamad Anwar Antony and Adnin Adawiyah Makhul

Pertanika Journal of Social Science and Humanities, Volume 29, Issue 3, July 2021

DOI: https://doi.org/10.47836/pjst.29.3.26

Keywords: Abdominal pain, benign ovarian cyst, fever, log-linear analysis, menopause, pregnancy

Published on: 31 July 2021

Ovarian cancer among women is known as “The Silent Killer”. It is caused by the malignant ovarian cyst, which can spread to other organs if it is not treated at an early stage. Some are benign ovarian cyst which can be treated through medical procedures such as laparoscopic and laparotomy. The type of medical procedure that the patients have to undergo depends on the size of cyst. A few risk factors that can cause benign ovarian cyst are age, pregnancy, menopause and menstrual cycle. Apart from that, there are a few symptoms of benign ovarian cyst which are fever, nausea and abdominal pain, abdominal distension, dysmenorrhea and intermenstrual bleeding. The association between these 12 discrete categorical data variables (factors, symptoms, treatment and size) are measured using the log-linear analysis in this study. According to the analysis, the patients who have large benign ovarian cyst need laparoscopic procedure, while those with smaller cyst need either laparotomy procedure or they do not have to undergo any surgery at all. Among all of the factors, menopause gives the highest risk factor of benign ovarian cyst, followed by age, pregnancy and menstrual cycle. Meanwhile, the interaction between nausea, abdominal pain and intermenstrual bleeding give the highest symptom rate to the benign ovarian cyst.

  • Ahmad, G., & Arslan, M. (2015). Unique expression of 35 KDa protein in serum and cystic fluid of women with malignant ovarian cyst substantiates its role in disease progression. Asian Pacific Journal of Reproduction, 4(4), 298-304. https://doi.org/10.1016/j.apjr.2015.07.007

  • Al-Azri, M., Al-Saidi, M., Eman, A. M., & Panchatcharam, S. M. (2018). Awareness of risk factors, symptoms and time to seek medical help of ovarian cancer amongst Omani women attending teaching hospital in Muscat Governorate, Oman. Asian Pacific journal of cancer prevention: APJCP, 19(7), Article 1833. https://doi.org/10.22034/APJCP.2018.19.7.1833

  • Alway, A., Zamri, N. E., Kasihmuddin, M. S. M., Mansor, A., & Sathasivam, S. (2020). Palm oil trend analysis via logic mining with discrete Hopfield neural network. Pertanika Journal of Science & Technology, 28(3), 967-981.

  • Agresti, A. (2003). Categorical data analysis (Vol. 482). John Wiley & Sons.

  • Akkoyun, İ., & Gülen, S. (2012). Laparoscopic cystectomy for the treatment of benign ovarian cyst in children: An analysis of 21 cases. Journal of Pediatric and Adolescent Gynecology, 25(6), 364-366. https://doi.org/10.1016/j.jpag.2012.06.007

  • Bhaskar, A., Ponnuraja, C., Srinivasan, R., & Padmanaban, S. (2020). Distribution and growth rate of COVID-19 outbreak in Tamil Nadu: A log-linear regression approach. Indian Journal of Public Health, 64(6), 188-191. https://doi.org/10.4103/ijph.IJPH_502_20

  • Cox, D. R., & Hinkley, D. V. (1979). Theoretical statistics. CRC Press.

  • Eggertsson, G. B., & Singh, S. R. (2019). Log-linear approximation versus an exact solution at the ZLB in the New Keynesian Model. Journal of Economic Dynamics and Control, 105, 21-43. https://doi.org/10.1016/j.jedc.2018.09.011

  • Farahani, L., & Datta, S. (2016). Benign ovarian cyst. Obstetrics, Gynaecology & Reproductive Medicine, 26(9), 271-275. https://doi.org/10.1016/j.ogrm.2016.06.003

  • Fatin N. S. A., Norlida, M. N., & Siti, Z. M. J. (2020). The application of log-linear model to selected poison patients. ASM Science Journal, 13, 1-7. https://doi.org/10.32802/asmscj.2020.sm26(1.21)

  • Field, A. (2013). Discovering statistics using IBM SPSS statistics. SAGE.

  • Gameraddin, M. B., & Bashab, N. K. (2018). Characterisation of benign ovarian lesions among Sudanese women undergoing pelvic ultrasound scans: The impact of parity and age. Journal of Clinical & Diagnostic Research, 12(5), 6-10. https://doi.org/10.7860/JCDR/2018/35107.11459

  • Hizkiyahu, R., Yahav, L., Yakovi, S., Davidesko, S., Abecassis, A., & Weintraub, A. Y. (2019). Short-and long-term outcomes of intraoperative spillage during laparoscopic removal of benign ovarian cyst. Surgical Endoscopy, 34(9), 3883-3887. https://doi.org/10.1007/s00464-019-07154-6

  • Huang, C., Hong, M. K., & Ding, D. C. (2017). A review of ovary torsion. Tzu-chi Medical Journal, 29(3), 143-147. https://doi.org/ 10.4103/tcmj.tcmj_55_17

  • Jamaludin, S. Z. M., Makhul, A. A., Kasihmuddin, M. S. M., Kustiani, A., Rahim, S. A., & Ismail, M. T. (2020). Modeling symptoms and risk factors towards size of benign ovarian cyst. Proceedings of The 27th National Symposium On Mathematical Sciences (SKSM27), Malaysia, 2266(1), Article 090010. https://doi.org/10.1063/5.0018108

  • Jha, P., Shekhar, M., Goldstein, R., Morgan, T., & Poder, L. (2019). Size threshold for follow-up of postmenopausal adnexal cyst: 1 cm versus 3 cm. Abdominal Radiology, 45, 3213-3217. https://doi.org/10.1007/s00261-019-02176-z

  • Kasihmuddin, M. S. M., Mansor, M., Basir, M. F. M., & Sathasivam, S. (2019). Discrete mutation Hopfield neural network in propositional satisfiability. Mathematics, 7(11), Article 1133. https://doi.org/10.3390/math7111133

  • Mandai, M., Suzuki, A., Matsumura, N., Baba, T., Yamaguchi, K., Hamanishi, J., Yoshioka, Y., Kosaka, K., & Konishi, I. (2012). Clinical management of ovarian endometriotic cyst (chocolate cyst): Diagnosis, medical treatment, and minimally invasive surgery. Current Obstetrics and Gynecology Reports, 1(1), 16-24. https://doi.org/10.1007/s13669-011-0002-3

  • McCullagh, P., & Nelder, J. A. (1989). Binary data. In Generalized linear models (pp. 98-148). Springer. http://dx.doi.org/10.1007/978-1-4899-3242-6

  • Medeiros, L. R., Rosa, D. D., Bozzetti, M. C., Fachel, J. M., Furness, S., Garry, R., Rosa, M. I., & Stein, A. T. (2009). Laparoscopy versus laparotomy for benign ovarian tumour. John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD004751.pub3

  • Milewska, A. J., Citko, D., Jankowska, D., Milewski, R., Konończuk, K., Więsak, T., Morgan, A., & Milewski, R. (2018). The use of log-linear analysis for pregnancy prediction. Studies in Logic, Grammar and Rhetoric, 56(1), 7-18. https://doi.org/10.2478/slgr-2018-0037

  • Mohamed, A. A., Al-Hussaini, T. K., Fathalla, M. M., El Shamy, T. T., Abdelaal, I. I., & Amer, S. A. (2016). The impact of excision of benign nonendometriotic ovarian cyst on ovarian reserve: A systematic review. American journal of obstetrics and gynecology, 215(2), 169-176. https://doi.org/10.1016/j.ajog.2016.03.045

  • Mukhopadhyay, A., Shinde, A., & Naik, R. (2016). Ovarian cyst and cancer in pregnancy. Best Practice & Research Clinical Obstetrics & Gynaecology, 33, 58-72. https://doi.org/10.1016/j.bpobgyn.2015.10.015

  • Rofe, G., Auslender, R., & Dirnfeld, M. (2013). Benign ovarian cyst in reproductive-age women undergoing assisted reproductive technology treatment. Open Journal of Obstetrics and Gynecology, 3(7A), Article 36929. https://doi.org/10.4236/ojog.2013.37A1005

  • Sanersak, S., Wattanakumtornkul, S., & Korsakul, C. (2006). Comparison of low-dose monophasic oral contraceptive pills and expectant management in treatment of functional ovarian cyst. Journal-Medical Association of Thailand, 89(6), 741-747.

  • Shiota, M., Kotani, Y., Umemoto, M., Tobiume, T., & Hoshiai, H. (2012). Study of the correlation between tumor size and cyst rupture in laparotomy and laparoscopy for benign ovarian tumor: Is 10 cm the limit for laparoscopy? Journal of Obstetrics and Gynaecology Research, 38(3), 531-534. https://doi.org/10.1111/j.1447-0756.2011.01748.x

  • Telli, E., Oge, T., Ozalp, S. S., & Yalcin, O. T. (2013). Giant peritoneal inclusion cyst mimicking ovarian cyst. Asian Pacific Journal of Reproduction, 2(4), 333-334. https://doi.org/10.1016/S2305-0500(13)60174-8

  • Törner, A., Stokkeland, K., Svensson, Å., Dickman, P. W., Hultcrantz, R., Montgomery, S., & Duberg, A. S. (2017). The underreporting of hepatocellular carcinoma to the cancer register and a log‐linear model to estimate a more correct incidence. Hepatology, 65(3), 885-892. https://doi.org/10.1002/hep.28775

  • Udomsinkul, P., Triratanachart, S., & Oranratanaphan, S. (2020). Risk factors for endometriotic-cyst associated ovarian cancer: A case controlled study. Taiwanese Journal of Obstetrics and Gynecology, 59(2), 269-274. https://doi.org/10.1016/j.tjog.2020.01.016

  • Vilsen, S. B., Kaer, S. K., & Stroe, D. L. (2019). Predicting Lithium-ion battery resistance degradation using a log-linear model. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 1136-1143). IEEE Conference Publication. https://doi.org/10.1109/ECCE.2019.8912770

  • Wiedermann, W., & von Eye, A. (2020). Log-linear models to evaluate direction of effect in binary variables. Statistical Papers, 61(1), 317-346. https://doi.org/10.1007/s00362-017-0936-2

  • Wu, M. P., Wu, C. J., Long, C. Y., Ho, C. H., Huang, K. H., Chu, C. C., & Chou, C. Y. (2013). Surgical trends for benign ovarian tumors among hospitals of different accreditation levels: An 11-year nationwide population-based descriptive study in Taiwan. Taiwanese Journal of Obstetrics and Gynecology, 52(4), 498-504. https://doi.org/10.1016/j.tjog.2013.10.008

  • Zamri, N. E., Mansor, M., Kasihmuddin, M. S. M., Alway, A., Jamaludin, S. Z. M., & Alzaeemi, S. A. (2020). Amazon employees resources access data extraction via clonal selection algorithm and logic mining approach. Entropy, 22(6), Article 596. https://doi.org/10.3390/e22060596

  • Zhu, B., Walter, S. D., Rosenbaum, P. L., Russell, D. J., & Raina, P. (2006). Structural equation and log-linear modeling: a comparison of methods in the analysis of a study on caregivers’ health. BMC Medical Research Methodology, 6(1), 1-14. https://doi.org/10.1186/1471-2288-6-49

  • Zhu, D., Chung, H. F., Dobson, A. J., Pandeya, N., Giles, G. G., Bruinsma, F., Brunner, E., Kuh, D., Hardy, R., Avis, N. E., Gold, E. B., Derby, C. A., Matthews, K. A., Cade, J. E., Greenwood, D. C., Demakakos, P., Brown, D. E., Sievert, L. L., Anderson, D., … & Mishra, G. D. (2019). Age at natural menopause and risk of incident cardiovascular disease: A pooled analysis of individual patient data. The Lancet Public Health, 4(11), e553-e564. https://doi.org/10.1016/S2468-2667(19)30155-0

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles