Home / Regular Issue / JST Vol. 29 (3) Jul. 2021 / JST-2483-2021


Magnetohydrodynamic Flow and Heat Transfer Over an Exponentially Stretching/Shrinking Sheet in Ferrofluids

Nurfazila Rasli and Norshafira Ramli

Pertanika Journal of Social Science and Humanities, Volume 29, Issue 3, July 2021

DOI: https://doi.org/10.47836/pjst.29.3.42

Keywords: Ferrofluids, heat transfer, magnetohydrodynamic, stretching/shrinking

Published on: 31 July 2021

In this research, the problem of magnetohydrodynamic flow and heat transfer over an exponentially stretching/shrinking sheet in ferrofluids is presented. The governing partial differential equations are transformed into nonlinear ordinary differential equations by applying suitable similarity transformations. These equations are then solved numerically using the shooting method for some pertinent parameters. For this research, the water-based ferrofluid is considered with three types of ferroparticles: magnetite, cobalt ferrite, and manganese-zinc ferrite. The numerical solutions on the skin friction coefficient, Nusselt number, velocity and temperature profiles influenced by the magnetic parameter, wall mass transfer parameter, stretching/shrinking parameter, and volume fraction of solid ferroparticle are graphically displayed and discussed in more details. The existences of dual solutions are noticeable for the stretching/shrinking case in a specific range of limit. For the first solution, an increasing number in magnetic and suction will also give an increment of skin friction coefficient and Nusselt number over stretching/shrinking sheet. For the skin friction coefficient only, it is showed a decreasing pattern after the intersection. Besides, the presence of ferroparticles in the fluids causes a high number of the fluid’s thermal conductivity and heat transfer rate.

  • Alavi, S. Q., Hussanan, A., Kasim, A. R. M., Rosli, N., & Salleh, M. Z. (2017). MHD stagnation point flow towards an exponentially stretching sheet with prescribed wall temperature and heat flux. International Journal of Applied and Computational Mathematics, 3(4), 3511-3523. https://doi.org/10.1007/s40819-017-0312-x

  • Bachok, N., Ishak, A., & Pop, I. (2012). Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. International Journal of Heat and Mass Transfer, 55(25-26), 8122-8128. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.051

  • Bhattacharyya, K. (2011). Boundary layer flow and heat transfer over an exponentially shrinking sheet. Chinese Physics Letters, 28(7), Article 074701. https://doi.org/10.1088/0256-307X/28/7/074701

  • Bhattacharyya, K., & Layek, G. C. (2014). Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet. Physics Research International, 2014, Article 592536. https://doi.org/10.1155/2014/592536

  • Bhattacharyya, K., & Pop, I. (2011). MHD boundary layer flow due to an exponentially shrinking sheet. Magnetohydrodynamics, 47(4), 337-344. https://doi.org/10.22364/mhd.47.4.2

  • Bhattacharyya, K., & Vajravelu, K. (2012). Stagnation-point flow and heat transfer over an exponentially shrinking sheet. Communications in Nonlinear Science and Numerical Simulation, 17(7), 2728-2734. https://doi.org/10.1016/j.cnsns.2011.11.011

  • Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Leheight Preserve, 15, 33-81.

  • Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.

  • Ishak, A. (2011). MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana, 40(4), 391-395.

  • Jusoh, R., Nazar, R., & Pop, I. (2018). Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet. Journal of Magnetism and Magnetic Materials, 465, 365-374. https://doi.org/10.1016/j.jmmm.2018.06.020

  • Khan, W. A., Khan, Z. H., & Haq, R. U. (2015). Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux. The European Physical Journal Plus, 130(4), 1-10. https://doi.org/10.1140/epjp/i2015-15086-4

  • Magyari, E., & Keller, B. (1999). Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics, 32(5), Article 577. https://doi.org/10.1088/0022-3727/32/5/012

  • Mansur, S., Ishak, A., & Pop, I. (2015). The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction. PLoS One, 10(3), Article e0117733. https://doi.org/10.1371/journal.pone.0117733

  • Mohamed, M. K. A., Ismail, N. A., Hashim, N., Shah, N. M., & Salleh, M. Z. (2019). MHD slip flow and heat transfer on stagnation point of a magnetite (Fe3O4) ferrofluid towards a stretching sheet with Newtonian heating. CFD Letters, 11(1), 17-27.

  • Muthtamilselvan, M., Kandaswamy, P., & Lee, J. (2010). Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Communications in Nonlinear Science and Numerical Simulation, 15(6), 1501-1510. https://doi.org/10.1016/j.cnsns.2009.06.015

  • Nadeem, S., Haq, R. U., & Khan, Z. H. (2014). Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Engineering Journal, 53(1), 219-224. https://doi.org/10.1016/j.aej.2013.11.003

  • Naramgari, S., & Sulochana, C. (2016). MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection. Alexandria Engineering Journal, 55(2), 819-827. https://doi.org/10.1016/j.aej.2016.02.001

  • Noghrehabadi, A., Ghalambaz, M., Izadpanahi, E., & Pourrajab, R. (2014). Effect of magnetic field on the boundary layer flow, heat, and mass transfer of nanofluids over a stretching cylinder. Journal of Heat and Mass Transfer Research, 1(1), 9-16. https://doi.org/10.22075/JHMTR.2014.149

  • Odenbach, S. (2003). Ferrofluids-magnetically controlled suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1-3), 171-178. https://doi.org/10.1016/S0927-7757(02)00573-3

  • Rahman, N. H. A., Bachok, N., & Rosali, H. (2019). MHD stagnation point flow over a stretching/ shrinking sheet in nanofluids. Universal Journal of Mechanical Engineering, 7(4), 183-191. https://doi.org/ 10.13189/ujme.2019.070406

  • Ramli, N., Ahmad, S., & Pop, I. (2018). MHD forced convection flow and heat transfer of ferrofluids over a moving at plate with uniform heat flux and second-order slip effects. Scientia Iranica, 25(4), 2186-2197. https://doi.org/10.24200/SCI.2017.4343

  • Shokrollahi, H. (2013). Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Materials Science and Engineering C, 33(5), 2476-2487. https://doi.org/10.1016/j.msec.2013.03.028

  • Tiwari, R. K., & Das, M. K. (2007). Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of heat and Mass transfer, 50(9-10), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

ISSN 0128-7702

e-ISSN 2231-8534

Article ID


Download Full Article PDF

Share this article

Related Articles