Home / Regular Issue / JST Vol. 30 (3) Jul. 2022 / JST-3238-2021


Mathematical Models for Predicting the Mechanical Properties of Poly(Lactic Acid) for Load-Bearing Applications

Abraham Aworinde, Titus Ajewole, Olakunle Olukayode and Joseph Dirisu

Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022

DOI: https://doi.org/10.47836/pjst.30.3.02

Keywords: Compressive modulus, fused deposition modeling, processing technologies, regression models, sample size effect, slenderness ratio

Published on: 25 May 2022

In order to widen the areas of application of poly (lactic acid) (PLA), there has been a multiplicity of experiments. This study attempts to develop mathematical models for predicting the mechanical properties of PLA to reduce the number of experimental runs and material wastage. The melt-cast method produced unreinforced PLA samples with different slenderness ratios (λ) in triplicate using. The samples were subjected to a compression test to obtain the mechanical properties captured at three main points on the stress-strain curve: yield, ultimate stress, and fracture. Regression models were developed from the data obtained at the three points, and their validity was examined by testing them against the previous relevant experimental studies from various authors. The coefficient of determination (R2) and coefficient of correlation (ρ) was also examined for each model to establish their degree of correctness further. Analyses show that the developed models give reasonable approximations of some of the properties examined. The mass (M) and the modulus of elasticity (E) were the most accurately predictable properties with [R2, ρ] of [99.97%, 0.9998] and [91.55%, 0.9568], respectively. Results also show that apart from the melt-cast method, the compressive modulus of PLA (both circular and rectangular cross-sections test samples) produced via injection molding and fused filament fabrication can be predicted with near accuracy using the model developed in this study. This study gives researchers the tools needed to avoid material wastage by having close-to-real values of the mechanical properties of PLA through prediction before carrying out any experiment.

  • Abbas, T., Othman, F. M., & Ali, H. B. (2017). Effect of infill parameter on compression property in FDM Process. International Journal of Engineering Research and Application, 7(10), 16-19. https://doi.org/10.9790/9622-0710021619

  • Abioye, A. A., & Obuekwe, C. C. (2020). Investigation of the biodegradation of low-density polyethylene-starch Bi-polymer blends. Results in Engineering, 5, Article 100090. https://doi.org/10.1016/j.rineng.2019.100090

  • Adegbola, T. A., Agboola, O., & Fayomi, O. S. I. (2020). Review of polyacrylonitrile blends and application in manufacturing technology: Recycling and environmental impact. Results in Engineering, 7, Article 100144. https://doi.org/10.1016/j.rineng.2020.100144

  • Adeosun, S. O., Aworinde, A. K., Diwe, I. V., & Olaleye, S. A. (2016). Mechanical and microstructural characteristics of rice husk reinforced polylactide nanocomposite. The West Indian Journal of Engineering, 39(2), 63-71.

  • Akpan, E. I., Gbenebor, O. P., Igogori, E. A., Aworinde, A. K., Adeosun, S. O., & Olaleye, S. A. (2019). Electrospun porous bio-fibre mat based on polylactide/natural fibre particles. Arab Journal of Basic and Applied Sciences, 26(1), 225-235. https://doi.org/10.1080/25765299.2019.1607995

  • Anderson, G., & Shenkar, N. (2021). Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environmental Pollution, 268, Article 115364. https://doi.org/10.1016/j.envpol.2020.115364

  • Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Emagbetere, E., Ishola, F. A., Olatunji, O., Akinlabi, S. A., Oyedepo, S. O., Ajayi, O. O., & Akinlabi, E. T. (2020a). Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs. Data in Brief, 32, Article 106107. https://doi.org/10.1016/j.dib.2020.106107

  • Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2020b). Comparative effects of organic and inorganic bio-fillers on the hydrophobicity of polylactic acid. Results in Engineering, 5, 1-3. https://doi.org/10.1016/j.rineng.2020.100098

  • Aworinde, A. K., Adeosun, S. O., & Oyawale, F. A. (2020c). Mechanical properties of poly(L-Lactide)-based composites for hard tissue repairs. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(5), 2152-2155. https://doi.org/10.35940/ijitee.C8501.039520

  • Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2019). The strength characteristics of chitosan- and titanium-poly(L-lactic) acid based composites. Journal of Physics: Conference Series, 1378(2), Article 022061. https://doi.org/10.1088/1742-6596/1378/2/022061

  • Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Emagbetere, E. (2018, October 29 - November 1). Mechanical strength and biocompatibility properties of materials for bone internal fixation: A brief overview. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 2115-2126). Pretoria, South Africa.

  • Aworinde, A. K., Taiwo, O. O., Adeosun, S. O., Akinlabi, E. T., Jonathan, H., Olayemi, O. A., & Joseph, O. O. (2021a). Biodegradation profiles of chitin, chitosan and titanium reinforced polylactide biocomposites as scaffolds in bone tissue engineering. Arab Journal of Basic and Applied Sciences, 28(1), 351-359. https://doi.org/10.1080/25765299.2021.1971865

  • Aworinde, A. K., Emagbetere, E., Adeosun, S. O., & Akinlabi, E. T. (2021b). Polylactide and its composites on various scales of hardness. Pertanika Journal of Science and Technology, 29(2), 1313-1322. https://doi.org/10.47836/pjst.29.2.34

  • Bakar, M. S. A., Cheang, P., & Khor, K. A. (2003). Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composites Science and Technology, 63, 421-425. https://doi.org/10.1016/S0266-3538(02)00230-0

  • Barkhad, M. S., Abu-Jdayil, B., Mourad, A. H. I., & Iqbal, M. Z. (2020). Thermal insulation and mechanical properties of polylactic acid (PLA) at different processing conditions. Polymers, 12(9), 1-16. https://doi.org/10.3390/POLYM12092091

  • Bouzouita, A., Notta-cuvier, D., Raquez, J., Lauro, F., & Dubois, P. (2017). Poly(lactic acid)-based materials for automotive applications. In M. L. Di Lorenzo & R. Androsch (Eds.), Industrial Applications of Poly(lactic acid) (pp. 177-219). Springer. https://doi.org/10.1007/12

  • Brischetto, S., & Torre, R. (2020). Tensile and compressive behavior in the experimental tests for PLA specimens produced via fused deposition modelling technique. Journal of Composites Science, 4(3), Article 140. https://doi.org/10.3390/jcs4030140

  • Cooper, T. A. (2013). Developments in bioplastic materials for packaging food, beverages and other fast-moving consumer goods. In N. Farmer (Ed.), Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG) (pp. 58-107). Woodhead Publishing Limited. https://doi.org/10.1533/9780857098979.108

  • Deepthi, S., Sundaram, M. N., Kadavan, J. D., & Jayakumar, R. (2016). Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydrate Polymers, 153, 492-500. https://doi.org/10.1016/j.carbpol.2016.07.124

  • Fang, Q., & Hanna, M. A. (1999). Rheological properties of amorphous and semicrystalline polylactic acid polymers. Industrial Crops and Products, 10(1), 47-53. https://doi.org/10.1016/S0926-6690(99)00009-6

  • Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012

  • Ferrer, G. G., Liedmann, A., Niepel, M. S., Liu, Z. M., & Groth, T. (2018). Tailoring bulk and surface composition of polylactides for application in engineering of skeletal tissues. Advances in Polymer Science, 282, 79-108. https://doi.org/10.1007/12_2017_26

  • Gbenebor, O. P., Akpan, E. I., Atoba, R. A., Adeosun, S. O., Olaleye, S. A., Taiwo, O. O., Igogori, E. A., Alamu, O. B., & Aworinde, A. K. (2018). Development and performance analysis of high voltage generator for electrospinning of nano fibres. Unilag Journal of Medicine, Science and Technology, 6(2), 45-58. https://doi.org/10.1520/acem20170008

  • Gbenebor, O. P., Atoba, R. A., Akpan, E. I., Aworinde, A. K., Adeosun, S. O., & Olaleye, S. A. (2018). Study on polylactide-coconut fibre for biomedical applications. In Minerals, Metals and Materials Series (pp. 263-273). Springer. https://doi.org/10.1007/978-3-319-72526-0_24

  • Hadasha, W., & Bezuidenhout, D. (2018). Poly(lactic acid) as biomaterial for cardiovascular devices and tissue engineering applications. Advances in Polymer Science, 282, 51-77. https://doi.org/10.1007/12_2017_27

  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

  • Lascano, D., Moraga, G., Ivorra-Martinez, J., Rojas-Lema, S., Torres-Giner, S., Balart, R., Boronat, T., & Quiles-Carrillo, L. (2019). Development of injection-molded polylactide pieces with high toughness by the addition of lactic acid oligomer and characterization of their shape memory behavior. Polymers, 11(12), Article 2099. https://doi.org/10.3390/polym11122099

  • Lawrence, S. S., Willett, J. L., & Carriere, C. J. (2001). Effect of moisture on the tensile properties of poly(hydroxy ester ether). Polymer, 42(13), 5643-5650. https://doi.org/10.1016/S0032-3861(00)00836-3

  • Li, J., Ding, J., Liu, T., Liu, J. F., Yan, L., & Chen, X. (2018). Poly(lactic acid) controlled drug delivery. Advances in Polymer Science, 282, 109-138. https://doi.org/10.1007/12_2017_11

  • Malinconico, M., Vink, E. T. H., & Cain, A. (2018). Applications of poly(lactic acid) in commodities and specialties. Advances in Polymer Science, 282, 35-50. https://doi.org/10.1007/12_2017_29

  • Mansour, G., Zoumaki, M., Tsongas, K., & Tzetzis, D. (2020). Starch-sandstone materials in the construction industry. Results in Engineering, 8, Article 100182. https://doi.org/10.1016/j.rineng.2020.100182

  • Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2012). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. https://doi.org/10.1177/0892705711423291

  • Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry and Engineering, 4(6), 2899-2916. https://doi.org/10.1021/acssuschemeng.6b00321

  • Noori, H. (2019). Interlayer fracture energy of 3D-printed PLA material. International Journal of Advanced Manufacturing Technology, 101(5-8), 1959-1965. https://doi.org/10.1007/s00170-018-3031-5

  • Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., & Osiecki, T. (2000). Mechanical and thermal properties of polylactide (PLA) composites modified with Mg, Fe, and polyethylene (PE) additives. Polymers, 12, 1-14. https://doi.org/10.3390/polym12122939

  • Rahimizadeh, A., Kalman, J., Henri, R., Fayazbakhsh, K., & Lessard, L. (2019). Recycled glass fiber composites fromwind turbine waste for 3D printing feedstock: Effects of fiber content and interface on mechanical performance. Materials, 12(23), Article 3929. https://doi.org/10.3390/MA12233929

  • Rahimizadeh, A., Tahir, M., Fayazbakhsh, K., & Lessard, L. (2020). Tensile properties and interfacial shear strength of recycled fibers from wind turbine waste. Composites Part A: Applied Science and Manufacturing, 131, Article 105786. https://doi.org/10.1016/j.compositesa.2020.105786

  • Rodrigues, N., Benning, M., Ferreira, A. M., Dixon, L., & Dalgarno, K. (2016). Manufacture and characterisation of porous PLA scaffolds. Procedia CIRP, 49, 33-38. https://doi.org/10.1016/j.procir.2015.07.025

  • Rokbani, H., & Ajji, A. (2018). Rheological properties of poly(lactic acid) solutions added with metal oxide nanoparticles for electrospinning. Journal of Polymers and the Environment, 26(6), 2555-2565. https://doi.org/10.1007/s10924-017-1155-6

  • Song, X., Chen, Y., Xu, Y., & Wang, C. (2014). Study on tough blends of polylactide and acrylic impact modifier. BioResources, 9(2), 1939-1952. https://doi.org/10.15376/biores.9.2.1939-1952

  • Sun, B., Liu, H., Zhou, S., & Li, W. (2014). Evaluating the performance of polynomial regression method with different parameters during color characterization. Mathematical Problems in Engineering, 2014(3), 1-8. https://doi.org/10.1155/2014/418651

  • Sundar, N., Stanley, S. J., Kumar, S. A., Keerthana, P., & Kumar, G. A. (2021). Development of dual purpose, industrially important PLA-PEG based coated abrasives and packaging materials. Journal of Applied Polymer Science, 138(21), 1-18. https://doi.org/10.1002/app.50495

  • Tajitsu, Y. (2017). Poly(lactic acid ) for sensing applications. In M. L. Di Lorenzo & R. Androsch (Eds.), Industrial Applications of Poly(lactic acid) (pp. 159-176). Springer. https://doi.org/10.1007/12

  • Taleb, K., Pillin, I., Grohens, Y., & Saidi-Besbes, S. (2021). Polylactic acid/Gemini surfactant modified clay bio-nanocomposites: Morphological, thermal, mechanical and barrier properties. International Journal of Biological Macromolecules, 177, 505-516. https://doi.org/10.1016/j.ijbiomac.2021.02.135

  • Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T., & Brem, H. (2016). Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews, 107, 163-175. https://doi.org/10.1016/j.addr.2016.06.018

  • Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Report, 6, 1-12. https://doi.org/10.1038/srep20770

  • Williams, J. G., & Gamonpilas, C. (2008). Using the simple compression test to determine Young’s modulus, Poisson’s ratio and the Coulomb friction coefficient. International Journal of Solids and Structures, 45(16), 4448-4459. https://doi.org/10.1016/j.ijsolstr.2008.03.023

  • Xu, P., Ma, J., Zhang, M., Ding, Y., & Meng, L. (2018). Fracture energy analysis of concrete considering the boundary effect of single-edge notched beams. Advances in Civil Engineering, 2018, Article 3067236. https://doi.org/10.1155/2018/3067236

  • Ye, J. J., & Zhou, J. (2013). Minimizing the condition number to construct design points for polynomial regression models. Society for Industrial and Applied Mathematics, 23(1), 666-686. https://doi.org/10.1137/110850268

ISSN 0128-7680

e-ISSN 2231-8526

Article ID


Download Full Article PDF

Share this article

Recent Articles