Home / Regular Issue / JST Vol. 30 (3) Jul. 2022 / JST-3298-2021

 

Removal of Remazol Yellow Using SnO2-Co Photocatalyst

Muhammad Said, Fahma Riyanti, Poedji Loekitowati Hariani, Sastriani and Widya Twiny Rizki

Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022

DOI: https://doi.org/10.47836/pjst.30.3.10

Keywords: Concentration, contact time, photocatalyst, Remazol yellow, SnO2/Co

Published on: 25 May 2022

Remazol yellow is a synthetic dye that pollutes the environment and causes disease because it is carcinogenic and mutagenic. Photocatalyst is one of the technologies to remove the dye concentration, and tin oxide (SnO2) with cobalt (Co) dopant has the potential to be a good semiconductor in the process. Therefore, this study aims to synthesize SnO2/Co composites as a photocatalyst to degrade Remazol yellow dye. The photodegradation process was carried out with several variables, including the effect of time and the initial concentration of the dye and conditions under pHpzc. Furthermore, the composites were made with SnO to Co mass ratios of (2:1), (2:2), (2:3), and were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), and Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) instruments. Based on the results, the SnO2/Co (2:3) composite was selected as a photocatalyst to degrade the dye as the XRD characterization showed the formation of a typical peak of 2θ at 33o. The energy bandgap of SnO2 is 3.05 eV, while the (2:3) composite had a value of 2.8eV. Moreover, the SEM characterization showed a non-uniform surface with pores and elements composition of Sn, O, and Co with the values 61.24, 24.67, and 14.09 wt%, respectively. The optimum condition for photodegradation was obtained at a contact time and concentration of 180 minutes and 10 ppm, respectively, while the removal of the dye reached 65-80%.

  • Abdelkader, E., Nadjia, L., & Rose-Noelle, V. (2016). Adsroption of Congo red azo dye on nanosized SnO2 derived from Sol-gel method. International Journal of Industrial Chemistry, 7, 53-70. https://doi.org/10.1007/s40090-015-0061-9

  • Akti, F. (2018). Photocatalytic degradation of remazol yellow using polyaniline‒doped tin oxide hybrid photocatalysts with diatomite support. Applied Surface Science, 455. 931-939. https://doi.org/10.1016/j.apsusc.2018.06.019

  • Akti, F., & Balci, S. (2022). Synthesis of APTES and alcohol modified Sn/SBA-15 in presence of competitive ion: Test in degradation of remazol yellow. Materials Research Bulletin, 145, Article 111496. https://doi.org/10.1016/j.materresbull.2021.111496

  • Alshabanat, M. N., & AL-Anazy, M. M. (2018). An experimental study of photocatalytic degradation of Congo red using polymer nanocomposite films. Journal of Chemistry, 2018, Article 9651850. https://doi.org/10.1155/2018/9651850

  • Attar, A. S. (2018). Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Solar Energy and Solar Cell, 183, 16-24. https://doi.org/10.1016/j.solmat.2018.03.046

  • Ba-Abbad, M. M., Takriff, M. S., Said, M., Benamor, A., Nasser, M. S., & Mohammad A.W. (2017). Photocatalytic degradation of pentachlorophenol using ZnO nanoparticles: Study of intermediates and toxicity. International Journal of Environmental Research, 11, 461-473. https://doi.org/10.1007/s41742-017-0041-3

  • Bhagwat, A. D., Sawant, S. S., Ankamwar, B. G., & Mahajan, C. M. (2015). Synthesis of nanostructured tin oxide (SnO2) Powder and tin films by sol-gel method. Journal of Nano and Electronic Physics, 7(4), 1-4.

  • Bhuiyan, M. S. H., Miah, M. Y., Paul, S. C., Aka, T. D., Saha, O., Rahaman, M. M., Sharif, M. J. I., Habiba, O., & Ashaduzzaman, M. (2020). Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6(8), Article e04603. https://doi.org/10.1016/j.heliyon.2020.e04603

  • Bouaine, A., Brihi, N., Schmeber, G., Ulhaq-Bouillet, C., Colis, S., & Dinia, A. (2007). Structural, optical and magnetic properties of co-doped SnO2 powders synthesized by the coprecipitation technique. Journal of Physical Chemistry C, 111(7), 2924-2928. https://doi.org/10.1021/jp066897p

  • Guezzen, B., Didi. M. A., & Medjahed, B. (2018). Sorption of Congo red from aqueous solution by surfactant-modified bentonite: Kinetic and factorial design study. International Journal of Chemical and Molecular Engineering, 12(3), 149-156. https://doi.org/10.5281/zenodo.1316193

  • Handayani, D. S., Purnawan, C., Pranoto., Hastuti, S., & Hilmiyana, D. (2016). Adsorption of remazol yellow from aqueous solution on chitosan-linked P-T-Butylcalix[4]Arene. In IOP Conference Series: Materials Science and Engineering (Vol. 107, Issue 1, Article 012011). IOP Publishing Limited. https://doi.org/ 10.1088/1757-899X/107/1/012011

  • Hassan, S. S. M., Kamel, A. H., Hassan, A. A., Amr, A. E. E., Naby H. A., & Elsayed, E. A. (2020). A SnO2/CeO2 nano-composite catalyst for alizarin dye removal from aqueous solutions. Nanomaterials, 10(2), Article 254. https://doi.org/10.3390/nano10020254

  • Ibarguen, C. A., Mosquera, A., Parra, R., Castro, M. S., & Rodríguez-Páez, J. E. (2007). Synthesis of SnO2 nanoparticles through the controlled precipitation route. Material Chemistry and Physics, 101(2-3), 433-440. https://doi.org/10.1016/j.matchemphys.2006.08.003

  • Kumar, A., & Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science & Engineering International Journal, 1(3), 106-114. https://doi.org/ 10.15406/mseij.2017.01.00018

  • Lokhand, P. E., & Panda, H. S. (2015). Synthesis and characterization of CoNi(OH)2 material for supercapacitor application. International Advanced Research Journal in Science, 2(9), 10-14.

  • Malvankar, S., Doke, S., Gahlaut, R., Martinez-Teran, E., El-Gendy, A.A., Deshpande, U., & Mahamuni, S. (2020). Co-doped SnO2 nanocrystals: XPS, raman, and magnetic studies. Journal of Electronic Materials, 49, 1872-1880. https://doi.org/10.1007/s11664-019-07865-5

  • Mani, R., Vivekanandan, K., & Vallalperuman, K. (2016). Synthesis of pure and cobalt (Co) doped SnO2 nanoparticles and its structural optical and photocatalytic properties. Journal of Materials Science: Material in Electronics, 28, 4396-4402. https://doi.org/10.1007/s10854-016-6067-z

  • Mohammed, H. A., Sanaullah, K., Soh, F. L., Andrew Ragai, H. R., Hamza, A., & Khan, A. (2017). Modeling and optimization of photocatalytic treatment of pre-treated palm oil mill effluent (POME) in a UV/TiO2 system using response surface methodology (RSM). Cogent Engineering, 4(1), Article 1382980. https://doi.org/10.1080/23311916.2017.1382980

  • Naje, A. N., Norry, A. S., & Suhail, A. M. (2013). Preparation and characterization of SnO2 nanoparticles. International Journal of Innovative Research in Science Engineering and Technology, 2(12), 7068-7072.

  • Paramarta, V., Taufik, A., & Saleh, R. (2016). Better adsorption capacity of SnO2 nanoparticles with different graphene addition. Journal of Physics: Conference Series, 776(1), Article 012039. http://dx.doi.org/10.1088/1742-6596/776/1/012039

  • Peng, T., Zhao, D., Dai, K., Shi, W., & Hirao, K. (2005). Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. Journal of Physical Chemistry B, 109(11), 4947-4952. https://doi.org/10.1021/jp044771r

  • Pirmoradi, H., Malakootikhah, J., Karimipour, M., Ahmadpour, A., Shahtahmasebi, N., & Koshky, E. F. (2011). Study of cobalt-doped SnO2 thin films. Middle-East Journal of Scientific Research, 8(1), 253-256.

  • Purnawan, C., Wahyuningsih, S., Aniza, O. N., & Sari, O. P. (2021). Photocatalytic degradation of remazol brilliant blue R and remazol yellow FG using TiO2 doped Cd, Co, Mn. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 804-815. https://doi.org/10.9767/bcrec.16.4.11423.804-815

  • Qamar, M. A., Shahid, S., Khan, S. A., Zaman, S., & Sarwar, M. N. (2017). Synthesis characterization optical and antibacterial studies of co-doped SnO2 nanoparticles. Digest Journal of Nanomaterials and Biostructures, 12(4), 1127-1135.

  • Qin, X., Liu, F., Wang, G., & Huang, G. (2015). Adsorption of humic acid from aqueous solution by hematite: Effect of pH and ionic strength. Environmental Earth Sciences, 73, 4011-4017. https://doi.org/10.1007/s12665-014-3686-7

  • Ragupathy, S., & Ramamoorthy, M. (2021). A study on Co doped SnO2 loaded corn cob activated carbon for the photocatalytic degradation of methylene blue dye. Research Square, 40(1), 1-20. https://doi.org/10.21203/rs.3.rs-168313/v1

  • Rukkumani, V., Devarajan, N., & Saravanakumar, M. (2017). Fabrication of sram memory devices using co-doped SnO2 nanoparticles. Journal of Ovonic Research, 13(1), 1-5.

  • Saravanakumar, M., Jeevitha, N., & Prabaharan, K. (2016). Structural and luminensence characteristics of nanocrystalline SnO2 doped with Co2+. Journal of Ovonic Research, 12(4), 209-214.

  • Shah, M. P., Patel, K. A., Nair, S. S., & Darji, A. M. (2013). Microbial decolorization of methyl orange dye by Pseudumonas Sp. OA Biotechnology, 2(1), Article 10. https://doi.org/10.13172/2052-0069-2-1-497

  • Sharma, J., Vashishtha, M., & Shah, D. O. (2014). Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures. Global Journal of Science Frontier Research: B Chemistry, 14(5), 18-32.

  • Shu, J., Wang, Z., Huang, Y., Huang, N. R. C., & Zhang, W. (2015). Adsorption removal of Congo red from aqueous by polyhedral Cu2O nanoparticles: Kinetics, isoterms dan thermodynamics mechanism analysis. Journal of Alloys and Compounds, 633, 338-346. https://doi.org/10.1016/j.jallcom.2015.02.048

  • Sivakarthik, P., Thangraj, V., Perumalraj, K., & Balaji, J. (2016). Synthesis of co-doped tin oxide nanoparticles for photocatalytic degradation of synthetic organic dyes. Digest Journal of Nanomaterials and Biostructures, 11(3), 935-943.

  • Sudha, D., & Sivakumar, P. (2015). Review on the photocatalytic activity of various composite catalysts. Chemical Engineering and Processing: Process Intensification, 97, 112-133. https://doi.org/10.1016/j.cep.2015.08.006

  • Wahyuningsih, S., Estiningsih, P., Anjani, V., Saputri, L. N. M. Z., Purnawan, C., & Pramo, E. (2017). Enhancing remazol yellow FG decolorination by adsorption and photoelectrocatalytic degradation. Molekul, 12(2), 126-132. http://dx.doi.org/10.20884/1.jm.2017.12.2.321

  • Wan, N., Lu, X., Wang, Y., Zhang, W., Bai, Y., Hu, Y. S., & Dai, S. (2016). Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Scientific Reports, 6(1), Article 18978. https://doi.org/10.1038/srep18978

  • Yehia, M., Labib, S., & Ismail, S. M. (2019). Structural, optical and magnetic properties of co-doped SnO2 nanoparticles. Journal of Electronic Materials, 48, 4170-4178. https://doi.org/10.1007/s11664-019-07179-6

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-3298-2021

Download Full Article PDF

Share this article

Recent Articles