PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (4) Jul. 2023 / JST-3732-2022

 

Probability Formulation of Soft Error in Memory Circuit

Norhuzaimin Julai, Farhana Mohamad, Rohana Sapawi and Shamsiah Suhaili

Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.19

Keywords: Complementary metal-oxide semiconductor (CMOS), differential logic with inverter latch, probability, soft error

Published on: 3 July 2023

Downscaling threatens the designers invested in integrity and error mitigation against soft errors. This study formulated the probability of soft error changing the logic state of a Differential Logic with an Inverter Latch (DIL). Using Cadence Virtuoso, current pulses were injected into various nodes in stages until a logic flip was instigated. The voltage and temperature parameters were increased to observe the current level changes over time. The critical charge from each stage was obtained, and a method to formulate the probability of each instance was developed. The voltage produced a higher effect of the change to the critical charge of any instance as compared to temperature. The findings revealed that the N-channel metal-oxide semiconductor (NMOS) drain is more vulnerable to temperature and voltage variation than P-channel metal-oxide semiconductor (PMOS).

  • Andjelkovic, M., Ilic, A., Stamenkovic, Z., Krstic, M., & Kraemer, R. (2017). An overview of the modeling and simulation of the single event transients at the circuit level. In 2017 IEEE 30th International Conference on Microelectronics (MIEL) (pp 35-44). IEEE Publishing. https://doi.org/10.1109/MIEL.2017.8190065

  • Arifeen, T., Hassan, A. S., & Lee, J. A. (2020). Approximate triple modular redundancy: A survey. IEEE Access, 8, 139851-139867. https://doi.org/10.1109/ACCESS.2020.3012673

  • Autran, J. L., & Munteanu, D. (2015). Soft Errors from Particles to Circuits. CRC Press. https://doi.org/10.1201/b18132

  • Cha, H., & Patel, J. H. (1993). A logic-level model for/spl alpha/-particle hits in CMOS circuits. In Proceedings of 1993 IEEE International Conference on Computer Design (ICCD) (pp. 538-542). IEEE Publishing. https://doi.org/10.1109/ICCD.1993.393319

  • Fuchs, G., F̈ugger, M., & Steininger, A. (2009). On the threat of metastability in an asynchronous fault-tolerant clock generation scheme. In 2009 15th IEEE Symposium on Asynchronous Circuits and Systems (pp. 127-136). IEEE Publishing. https://doi.org/10.1109/ASYNC.2009.15

  • Gadlage, M. J., Roach, A. H., Duncan, A. R., Williams, A. M., Bossev, D. P., & Kay, M. J. (2017). Soft errors induced by high-energy electrons. IEEE Transactions on Device and Materials Reliability, 17(1), 157-162. https://doi.org/10.1109/TDMR.2016.2634626

  • Hara, K., Aoyagi, W., Sekigawa, D., Iwanami, S., Honda, S., Tsuboyama, T., Arai, Y., Kurachi, I., Miyoshi, T., Yamada, M., & Ikegami, Y. (2019). Radiation hardness of silicon-on-insulator pixel devices. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 924, 426-430. https://doi.org/10.1016/j.nima.2018.05.077

  • Hashimoto, M., Kobayashi, K., Furuta, J., Abe, S. I., & Watanabe, Y. (2019). Characterizing SRAM and FF soft error rates with measurement and simulation. Integration, 69, 161-179. https://doi.org/10.1016/j.vlsi.2019.03.005

  • Hashimoto, M., & Liao, W. (2020). Soft error and its countermeasures in terrestrial environment. In 2020 25th Asia and South Pacific Design Automation Conference, (ASP-DAC) (pp. 617-622). IEEE Publishing. https://doi.org/10.1109/ASP-DAC47756.2020.9045161

  • Hazucha, P., & Svensson, C. (2000). Impact of CMOS technology scaling on the atmospheric neutron soft error rate. IEEE Transactions on Nuclear Science, 47(6), 2586-2594. https://doi.org/10.1109/23.903813

  • Hillier, C., & Balyan, V. (2019). Error detection and correction on-board nanosatellites using hamming codes. Journal of Electrical and Computer Engineering, 2019, Article 3905094. https://doi.org/10.1155/2019/3905094

  • Hubert, G., Artola, L., & Regis, D. (2015). Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation. Integration, 50, 39-47. https://doi.org/10.1016/j.vlsi.2015.01.003

  • Jiang, J., Xu, Y., Ren, J., Zhu, W., Lin, D., Xiao, J., Kong, W., & Zou, S. (2018). Low-cost single event double-upset tolerant latch design. Electronics Letters, 54(9), 554-556. https://doi.org/10.1049/el.2018.0558

  • Kastensmidt, F., & Rech, P. (Eds). (2015). FPGAs and Parallel Architectures for Aerospace Applications: Soft Errors and Fault-Tolerant Design. Springer. https://doi.org/10.1007/978-3-319-14352-1

  • Ke, J., Huang, H., Sun, P., Abuogo, J., Zhao, Z., & Cui, X. (2018). Influence of parasitic capacitances on transient current distribution of paralleled SiC MOSFETs. In 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia) (pp. 88-93). IEEE Publishing. https://doi.org/10.1109/WiPDAAsia.2018.8734667

  • Lwin, N. K. Z., Sivaramakrishnan, H., Chong, K. S., Lin, T., Shu, W., & Chang, J. S. (2019). Single-event-transient resilient memory for DSP in space applications. In 2018 IEEE 23rd International Conference on Digital Signal Processing(DSP) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/ICDSP.2018.8631639

  • Mamaluy, D., & Gao, X. (2015). The fundamental downscaling limit of field effect transistors. Applied Physics Letters, 106(19), 1-6. https://doi.org/10.1063/1.4919871

  • Sawamura, H., Iguchi, T., & Handa, T. (2003). Soft errors of semiconductors caused by secondary cosmic-ray neutrons. In O. Takaaki & F. Tokio (Eds.), Proceedings of the 2002 Symposium on Nuclear Data (pp. 271-276). Japan Atomic Energy Research Institute. http://dx.doi.org/10.11484/JAERI-Conf-2003-006

  • Sayil, S. (2016). Soft Error Mechanisms, Modeling and Mitigation. Springer. https://doi.org/10.1007/978-3-319-30607-0

  • Sayil, S., Shah, A. H., Zaman, M. A., & Islam, M. A. (2017). Soft error mitigation using transmission gate with varying gate and body bias. IEEE Design & Test, 34(1), 47-56. https://doi.org/10.1109/MDAT.2015.2499272

  • Sielewicz, K. M., Rinella, G. A., Bonora, M., Giubilato, P., Lupi, M., Rossewij, M. J., Schambach, J., & Vanat, T. (2017). Experimental methods and results for the evaluation of triple modular redundancy SEU mitigation techniques with the Xilinx Kintex-7 FPGA. In 2017 IEEE Radiation Effects Data Workshop (REDW) (pp. 1-7). IEEE Publishing. https://doi.org/10.1109/NSREC.2017.8115451

  • Weulersse, C., Houssany, S., Guibbaud, N., Segura-Ruiz, J., Beaucour, J., Miller, F., & Mazurek, M. (2018). Contribution of thermal neutrons to soft error rate. IEEE Transactions on Nuclear Science, 65(8), 1851-1857. https://doi.org/10.1109/TNS.2018.2813367

  • Wirthlin, M., Keller, A., McCloskey, C., Ridd, P., Lee, D. S., & Draper, J. (2016). SEU mitigation and validation of the LEON3 soft processor using triple modular redundancy for space processing. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (pp. 205-214). ACM Publishing. https://doi.org/10.1145/2847263.2847278

  • Yan, Z., Shi, Y., Liao, W., Hashimoto, M., Zhou, X., & Zhuo, C. (2020). When single event upset meets deep neural networks: observations, explorations, and remedies. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC) (pp.163-168). IEEE Publishing. https://doi.org/10.1109/ASP-DAC47756.2020.9045134

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3732-2022

Download Full Article PDF

Share this article

Related Articles