Home / Regular Issue / JST Vol. 31 (3) Apr. 2023 / JST-3883-2022

 

Study and Simulation of the Electric Field-Induced Spin Switching in PZT/NiFe/CoFe Nanostructured Composites

Minh Hong Thi Nguyen, Thanh Tien Pham, Nam Van La, Soo Kien Chen and Tiep Huy Nguyen

Pertanika Journal of Science & Technology, Volume 31, Issue 3, April 2023

DOI: https://doi.org/10.47836/pjst.31.3.22

Keywords: Electric field controlled magnetic anisotropy, Monte Carlo and NMAG simulations, nanostructured composites

Published on: 7 April 2023

In this work, we have studied the electric field-induced spin switching in the PZT/NiFe/CoFe nanostructured composites by sputtering ferromagnetic layers on a horizontal polarized piezoelectric PZT substrate. The electric field-induced change in the magnetization orientation was investigated systematically using a vibrating sample magnetometer and analytical simulations. The results revealed that electric field applications could indirectly control the magnetic spin orientations. Moreover, the magnetization change depends not only on the electric field but also on the direction of the electric field applying against the magnetic field. The images of magnetic moment orientations under various electric field applications are modeled by the Monte Carlo and NMAG simulations. In particular, a critical electric field of Ecr ≈ 300 kV/cm, which makes a 90o spin switching, was determined. These results are proposed to offer an opportunity for random access memory applications.

  • Cheng, Y., Peng, B., Hu, Z., Zhou, Z., & Liu, M. (2018). Recent development and status of magnetoelectric materials and devices. Physics Letters A, 382(41), 3018-3025. https://doi.org/https://doi.org/10.1016/j.physleta.2018.07.014

  • Cheong, S. W., & Mostovoy, M. (2007). Multiferroics: A magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20. https://doi.org/10.1038/nmat1804

  • Cornelissen, T. D., Biler, M., Urbanaviciute, I., Norman, P., Linares, M., & Kemerink, M. (2019). Kinetic Monte Carlo simulations of organic ferroelectrics. Physical Chemistry Chemical Physics, 21(3), 1375-1383. https://doi.org/10.1039/C8CP06716C

  • Dung, T. V., & Long, D. D. (2016). Electric-field control of a spin “bit” configuration in MERAM model: A Monte Carlo study. VNU Journal of Science: Mathematics - Physics, 32(2), 61-68.

  • Eerenstein, W., Mathur, N. D., & Scott, J. F. (2006). Multiferroic and magnetoelectric materials. Nature, 442(7104), 759-765. https://doi.org/10.1038/nature05023

  • Hong, N. T. M., Doan, N. B., Tiep, N. H., Cuong, L. V., Trinh, B. N. Q., Thang, P. D., & Kim, D. H. (2013). Switchable voltage control of the magnetic anisotropy in heterostructured nanocomposites of CoFe/NiFe/PZT. Journal of the Korean Physical Society, 63(3), 812-816. https://doi.org/10.3938/jkps.63.812

  • Hong, N. T. M., Duc, N. H., & Thang, P. D. (2013). Converse magnetoelectric effect in PZT/NiFe/CoFe nanocomposites. International Journal of Nanotechnology, 10(3-4), 206-213. https://doi.org/10.1504/IJNT.2013.053133

  • Hong, N. T. M., Ha, P. T., Cuong, L. V., Long, P. T., & Thang, P. D. (2014). Electrical field-induced magnetization switching in CoFe/NiFe/PZT multiferroics. IEEE Transactions on Magnetics, 50(6), 1-4. https://doi.org/10.1109/TMAG.2014.2304518

  • Hu, J. M., Li, Z., Wang, J., & Nan, C. W. (2010). Electric-field control of strain-mediated magnetoelectric random access memory. Journal of Applied Physics, 107(9), Article 093912. https://doi.org/10.1063/1.3373593

  • Kadiri, A., Tamerd, M. A., Ngantso, G. D., Arejdal, M., Abbassi, A., Amraoui, Y. E., Ez-Zahraouy, H., & Benyoussef, A. (2022). Effect of thickness size on magnetic behavior of layered Ising nanocube Fe/Co/Fe: A Monte Carlo simulation. Journal of Superconductivity and Novel Magnetism, 35(9), 2425-2434. https://doi.org/10.1007/s10948-022-06232-6

  • Kumar, S. D., Gupta, S., Swain, A. B., Subramanian, V., Padmanabhan, M. K., & Mahajan, R. L. (2021). Large converse magnetoelectric effect in Sm doped Pb(Mg1/3Nb2/3)-PbTiO3 and NiFe2O4 laminate composite. Journal of Alloys and Compounds, 858, Article 157684. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.157684

  • Liang, X., Chen, H., & Sun, N. X. (2021). Magnetoelectric materials and devices. APL Materials, 9(4), Article 041114. https://doi.org/10.1063/5.0044532

  • Lin, H., Gao, Y., Wang, X., Nan, T., Liu, M., Lou, J., Yang, G., Zhou, Z., Yang, X., Wu, J., Li, M., Hu, Z., & Sun, N. X. (2016). Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Transactions on Magnetics, 52, 1-8. https://doi.org/10.1109/TMAG.2016.2514982

  • Liu, M., Obi, O., Lou, J., Chen, Y., Cai, Z., Stoute, S., Espanol, M., Lew, M., Situ, X., Ziemer, K. S., Harris, V. G., & Sun, N. X. (2009). Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Advanced Functional Materials, 19(11), 1826-1831. https://doi.org/https://doi.org/10.1002/adfm.200801907

  • Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A., & Hlil, E. K. (2014). Magnetic properties of Fe/Cr layers studied by Monte Carlo simulations. Journal of Superconductivity and Novel Magnetism, 27(3), 845-850. https://doi.org/10.1007/s10948-013-2344-8

  • Palneedi, H., Annapureddy, V., Priya, S., & Ryu, J. (2016). Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators, 5(1), Article 9. https://www.mdpi.com/2076-0825/5/1/9

  • Popov, M., Liu, Y., Safonov, V. L., Zavislyak, I. V., Moiseienko, V., Zhou, P., Fu, J., Zhang, W., Zhang, J., Qi, Y., Zhang, T., Zhou, T., Shah, P. J., McConney, M. E., Page, M. R., & Srinivasan, G. (2020). Strong converse magnetoelectric effect in a composite of weakly ferromagnetic iron borate and ferroelectric lead zirconate titanate. Physical Review Applied, 14(3), Article 034039. https://doi.org/10.1103/PhysRevApplied.14.034039

  • Prudnikov, V. V., Prudnikov, P. V., & Romanovskiy, D. E. (2016). Monte Carlo simulation of magnetic multilayered structures with giant magnetoresistance effects. Journal of Physics: Conference Series, 681, Article 012016. https://doi.org/10.1088/1742-6596/681/1/012016

  • Tamerd, M. A., Abraime, B., El Rhazouani, O., Lahmar, A., El Marssi, M., Hamedoun, M., Benyoussef, A., & El Kenz, A. (2020). Modelling of the ferroelectric and energy storage properties of PbZr1−xTixO3 thin films using Monte Carlo simulation. Materials Research Express, 6(12), Article 126429. https://doi.org/10.1088/2053-1591/ab625f

  • Taylor, M. B., & Gyorffy, B. L. (1992). Monte Carlo simulations of an fcc NicFe1−c alloy with vector magnetic freedom. Journal of Magnetism and Magnetic Materials, 104-107, 877-878. https://doi.org/https://doi.org/10.1016/0304-8853(92)90403-B

  • Wei, X. K., Prokhorenko, S., Wang, B. X., Liu, Z., Xie, Y. J., Nahas, Y., Jia, C. L., Dunin-Borkowski, R. E., Mayer, J., Bellaiche, L., & Ye, Z. G. (2021). Ferroelectric phase-transition frustration near a tricritical composition point. Nature Communications, 12(1), Article 5322. https://doi.org/10.1038/s41467-021-25543-1

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3883-2022

Download Full Article PDF

Share this article

Related Articles